
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Multi-layer Markov modulated fluid flow processes, as generalizations of single-layer 

MMFF processes, were introduced and investigated in the past decade. Such stochastic 

processes have found applications in areas such as queueing theory and risk analysis. Yet 

the full potential of such a tool is to be explored by researchers and practitioners. In this 

paper, we review and refine the theory on multi-layer MMFF processes. The main subject 

is the joint stationary distribution of the multi-layer MMFF process. We also apply the 

theory to a queueing model with customer abandonment to demonstrate the usefulness of 

multi-layer MMFF processes. The objective of the paper is to make the basic theory on 

multi-layer MMFF processes more accessible, easier to understand, and convenient to 

implement for researchers and practitioners. 

MMFF processes are piece-wise linear stochastic processes in which the rate of fluid 

change is modulated by a continuous time Markov chain (to be called the underlying 

Markov chain). Consequently, the fluid level is continuous and can increase linearly, 
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decrease linearly, or remain the same for exponential periods of time. Figure 1(a) plots a 

sample path of a typical MMFF process. MMFF processes are different from deterministic 

fluid models that have been used in various branches of queueing theory, especially in the 

study of the stability of queueing networks. Multi-layer MMFF processes are MMFF 

processes in which several underlying Markov chains are used to modulated the rate of fluid 

change. As such, the fluid level change rate can be different for different layers of the fluid 

level, which are separated by border lines. State changes of the underlying Markov chains 

are regulated as the fluid level passing, reflecting, entering, or leaving border lines so as to 

combine the underlying Markov chains. Figure 1(b) plots a sample path of a typical multi-

layer MMFF process with two (dashed) border lines and three layers. Multi-layer MMFF 

processes are complicated stochastic processes with complicated solutions for basic 

quantities such as the stationary distribution of the process. They are amenable to stochastic 

systems in which key system variables/parameters are modulated by a stochastic process. 

They may not be the most convenient tools for analyzing simple stochastic systems such as 

the M/M/1 queue. Yet they are the power house for the investigation of complicated 

stochastic systems such as queueing models, risk/insurance models, and dam models. 

(a) A sample path of a single-layer MMFF process. (b) A sample path of a three-layer MMFF process.

 

Figure 1. Sample paths of MMFF processes. 

The main contributions of the paper are (i) reviewing and refining the theory and 

algorithm for computing the joint stationary distributions of multi-layer MMFF processes; 

and (ii) putting together several ideas in applied probability and queueing theory to develop 

algorithms for stochastic models arising from queueing systems and risk models. 

Specifically, that includes (a) Presenting and refining the existing theory on multi-layer 

MMFF processes; (b) Developing an easy way to implement computational procedure for 

the joint stationary distribution of multi-layer MMFF processes; and (c) Combining the 

MMFF approach and the CSFP method to develop a relatively simple and efficient 

C  He, Wu

38



 

algorithm to analyze moderately large scale queueing systems such as the MAP/PH/K queue 

with customer abandonment and a moderately large number of servers. The algorithms 

presented in this paper can be useful for practitioners in their design of stochastic systems 

such as call centres. The algorithms can also be useful for researchers to do numerical 

experiments in their investigations of stochastic models. In addition, the queueing analysis 

finds quantities related to customers abandoning the queue before reaching the head of the 

waiting queue (e.g., the abandonment probability and abandonment (waiting) time), 

customers abandoning the queue at the head of the waiting queue, and the queue length 

distributions, which are difficult to derive. 

The rest of the paper is organized as follows. In Section 2, we give a brief literature 

review on multi-layer MMFF processes, and the study of queues with customer 

abandonment. In Section 3, we define multi-layer MMFF processes. In Section 4, basic 

quantities and their properties related to MMFF processes are collected. In Section 5, we 

review and refine the theory on the joint stationary distribution of multi-layer MMFF 

processes. Step by step, we develop a computational procedure for the joint stationary 

distribution. In Section 6, we apply the MMFF approach to the MAP/PH/K+GI queue. 

Algorithms are developed for computing a variety of queueing quantities for the queue. We 

also present a few numerical examples and discuss some computation issues when the 

number of servers is moderately big. Section 7 concludes the paper. 

2. Literature Review 

In the literature, MMFF processes are also known as fluid flow models, stochastic fluid 

flows, or Markovian fluid flows. Early works on MMFF processes include Loynes [36], 

Anick et al. [5], Rogers [42], and Asmussen [6], which were motivated by an application in 

dam control. In those papers, MMFF processes were introduced and some basic quantities 

were obtained. By using Wiener-Hopf factorization, basic matrices such as ,Ψ which 

represents the state change at regenerative epochs (e.g., the fluid level returns to zero), and 

,U which represents the change of state as the fluid level reaches a new low level, were 

obtained. Since MMFF processes can approach positive infinity, negative infinity, or both 

(depending on the mean drift rate), they do not have stationary distributions. Nevertheless, 

stationary distributions exist for their truncated version, which is known as the Markov 

modulated fluid queues (MMFQs). By using time-reversed Markov processes, the joint 

stationary distributions of the fluid level and the state of underlying Markov chain were 

obtained for MMFQs (e.g., Rogers [42]). We shall use MMFF for MMFQ in this paper with 

the understanding that stationary distributions exist under a certain restriction. MMFF 

processes with a Brownian component were introduced and investigated. We do not review 

works in that direction since our focus is on MMFF processes without a Brownian 
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component. 

Ramaswami [41] discovered a relationship between the basic quantities { , }ΨU and 

the basic matrix G for quasi birth-and-death processes in matrix-analytic methods (Neuts 

[39] and Latouche and Ramaswami [35]), which led to a new method for computing ,Ψ , in 

addition to the classical method of solving a quadratic Riccati equation. Ramaswami [41] 

also found a relationship between the joint stationary distribution and the crossing numbers 

of the fluid level, which led to a new approach to compute the joint stationary distribution 

and an application of matrix ,K  another basic quantity of MMFF processes. Since then, the 

study of MMFF processes attracted the attention of many researchers and a large number of 

papers appeared with various applications including 
 

i) In matrix-analytic methods: see Ramaswami [41], Ahn and Ramaswami [2, 3, 4], da 

Silva Soares and Latouche [19, 20, 21, 22], and Latouche and Nguyen [34];  

ii) In risk analysis: Ahn et al. [1], Asmussen [7], Avram and Usabel [8], and Badescu et al. 

[9, 10, 11], and Badescu and Landriault [12, 13];  

iii) In queueing theory: Horváth and Van Houdt [32], Van Houdt [43], and Horváth [31]; 
and 

iv) In the theory of MMFF processes (e.g., two stage MMFF processes, first passage times, 

and two dimensional MMFF processes): Bean et al. [16, 17], and Bean and O'Reilly 

[14, 15].  
 

A natural extension of (the single layer) MMFF processes are multi-layer MMFF 

processes, which were introduced in da Silva Soares and Latouche [21]. In fact, that paper 

considered the standard MMFF processes truncated from both above and below. The paper 

extended existing results on first passage probabilities and the joint stationary distribution. 

It was immediately clear from their work that multi-layer MMFF processes can be analyzed 

in a similar way, although the solution process is more involved and the presentation of 

results can be tedious. The main idea is to first analyze the process within individual layers 

and then combine results together through the transitions related border lines. Since then, 

more studies on multi-layer MMFF processes and their applications in queueing theory 

followed.   
 

• The basic theory for the analysis on multi-layer MMFF processes was established in 

da Silva Soares and Latouche [21, 22], especially that are related to the joint stationary 

distribution of the processes. We review their results in this paper. We refine the 

theory on the joint stationary distribution, and present the theory and related algorithm 

in a systematic form. In Bean and O'Reilly [14], the multi-layer MMFF processes, in 

their full scale, were introduced. Their paper focused on the first passage time and 

first passage probabilities. 
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• Horváth and Van Houdt [32], Van Houdt [43], and Horváth [31] applied the theory 

on multi-layer MMFF processes to queueing models. Van Houdt [43] investigated a 

single server queue with multiple types of customers and customer abandonment, and 

obtained quantities related to customer abandonment and waiting times. Horváth [31] 

analyzed a single server queue with multiple types of customers with service priority. 

Our work on the queueing model is close to that in Van Houdt [43] in which a single 

server queue with customer abandonment is studied. We consider a queueing model 

with many servers and customer abandonment, and extend the analysis to more 

queueing quantities (e.g., different types of abandonment probabilities and waiting 

times, and the mean queue length).  

Queueing systems with customer abandonment are important in the design of many 

stochastic systems such as call centres. The investigation of such queueing systems has been 

extensive (e.g., Dai and He [23, 24], Dai et al. [25], and references therein). Choi et al. [18] 

introduced a method to analyze the MAP/M/K+GI queue with constant abandonment time 

(i.e., MAP/M/K τ+ ). Kim and Kim [33] adopted the same method to analyze the M/PH/1 

queue with constant abandonment time. Following their approach, He et al. [18] 

investigated the M/PH/K queue with constant abandonment time. Unfortunately, the method 

cannot be applied to the MAP/PH/K queue with customer abandonment, due to the lack of 

commutability of some matrices. 

MMFF processes have been proven to be an effective tool in analyzing queueing 

models. The basic idea of the approach is to introduce an MMFF process associated with 

the workload/age process of the queueing systems. If the stationary distribution of the fluid 

flow process can be found, then some queueing quantities can be obtained. Following 

previous works, we apply the multi-layer MMFF processes to the MAP/PH/K+GI queue, 

where the abandonment time distribution is assumed to be finite discrete. The queueing 

model is quite general since MAPs can approximate any arrival process and PH random 

variables can approximate any nonnegative random variables. To deal with a state space 

dimensionality issue, similar to He et al. [18], we use an approach developed in Ramaswami 

[40] (also see He and Alfa [29]), called CSFP (count-server-for-phase), to reduce the state 

space so that the algorithm developed in this paper can handle systems with up to one 

hundred servers. Thus, algorithms developed in this paper can be used by researchers and 

practitioners in their studies/design to gain insight on stochastic systems of interest. 

The power of MMFF processes can be further demonstrated by their capacity in dealing 

with more complex queueing systems. For example, with minor modifications, the method 

presented in Section 6 can be used to analyze the MAP/PH/K+GI queue in which the 

abandonment time of the customer at the head of the waiting queue has a different 

distribution than that of the rest. Further, the method can also be extended to analyze queues 
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in which the customer arrival process and/or the service times depends on the age of the 

customer at the head of the waiting queue. 

3. Multi-Layer MMFF Processes: Definition 

We present the multi-layer MMFF processes first introduced in Bean and O'Reilly [14]. 

As mentioned earlier, a multi-layer MMFF process is a fluid flow process in which the fluid 

level is a piece-wise linear continuous function of the time and the change rate of its fluid 

level is modulated by a continuous time Markov chain. A two dimensional process 

{( ( ), ( )), 0}X t t tφ ≥  is called a multi-layer Markov modulated fluid flow (MMFF) process if 

the following conditions are satisfied.   

1. There are 1N + constants 0 1{ = , ,..., = }Nl l l−∞ ∞ such that 1N ≥ and 0 1< <...< Nl l l , 

to be called Borders. Those borders form N intervals 0 1( , )l l , 1 2( , )l l , ..., and 

1( , )NN
l l− , to be called Layer 1, 2, ..., and ,N  respectively. 

2. If ( )X t is in Layer n , for ,=1, ..., 1n N − { ( ), 0}t tφ ≥ is a continuous time irreducible 

Markov chain on finite state space ( )nS with infinitesimal generator ( ).nQ  

3. The fluid process { ( ), 0}X t t ≥ is controlled by (.)φ such that the value of ( )X t  

changes linearly at rate ( ( ( )))
( )
L X t
t

cφ
at time ,t where ( )=L x n if 1 ,< < nn

l x l− for 

=1, ..., .n N  The rate ( )n
ic of fluid level change can be positive, negative, or zero. We 

put the rates into vectors ( ) ( ) ( )={ , },n n n
ic i∈c S for =1, ..., .n N  For convenience, we 

partition the state space ( )nS into three subsets according to the sign of ( )n
ic as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 .={ : > 0}, ={ : < 0}, ={ : = 0}n n n n n n n n n

i i ii c i c i c+ −∈ ∈ ∈S S S S S S  (3.1) 

We further divide ( )
,

nc according the signs of its elements, and the infinitesimal 

generator ( )nQ of the underlying Markov chain as  

 

( ) ( ) ( )

( ) ( ) ( )( )
0

( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )
0 0 0 00

= ( , , 0);

.

n n n

n n nn

n n n n n

n n n n

Q Q Q

Q Q Q Q

Q Q Q

+ −

++ +− ++

− −+ −− −

+ −

 
 
 
 
 

=

c c c

S
S
S

 (3.2) 

We note that ( ) ( ),n n
+ −S S , and ( )

0
nS are placed in the above definition to show the 

directions of transitions, and are not a part of ( ).nQ  

4. If ( )= ,nX t l  for ,=1, ..., 1n N − { ( ), 0}t tφ ≥ is a continuous time irreducible Markov 

chain on finite state space ( )n
b

S with sub-generator ( )
.

n
bb

Q  During the period that 

( )tφ is in ( )n
b

S , ( )X t remains at nl until ( )tφ switches from ( )n
b

S to either ( )n
−S or 
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( 1)
.

n+
+S  The process ( )tφ can go from ( )n

b
S to (i) ( 1)n+

+S with transition rate matrix 

( )n
b

Q +
; and (ii) ( )n

−S with transition rate matrix ( )
.

n
b

Q −
 

5. If ( )X t reaches nl from below, for ,=1, ..., 1n N − the process { ( ), 0}t tφ ≥ can switch 

from ( )nS (actually from ( )n
+S ) to (i) ( )n

−S (i.e., reflecting back to Layer n ) with 

probability (matrix) ( )n
b

P+ −
; (ii) ( 1)n+

+S (i.e., passing Border nl to Layer 1n+ ) with 

probability ( )n
b

P+ +
; or (iii) into ( )n

b
S with probability ( )n

bb
P+

. 

6. If ( )X t reaches nl from above, for ,=1, ..., 1n N − the process { ( ), 0}t tφ ≥ can switch 

from ( 1)n+S (actually ( 1)n+
−S ) to (i) ( 1)n+

+S (i.e., reflecting back to Layer 1n+ ) with 

probability ( )n
b

P− +
; (ii) ( )n

−S (i.e., passing Border nl to Layer n ) with probability ( )n
b

P− −
; 

or (iii) into ( )n
b

S with probability ( )n
bb

P−
.  

By the above definition, for =1,2, ..., 1,n N −  we must have (i) ( ) ( ) ( ) = 0n n n
bb b b

Q Q Q+ −+ +e e e , 

where e is the column vector of ones and an appropriate size; (ii) ( ) ( ) ( ) = ;n n n
b b bb

P P P+ + + − ++ +e e e e  

and (iii) ( ) ( ) ( ) = .n n n
b b bb

P P P− + − − −+ +e e e e  If we define ( ) = 0n
ic for all n and ( )n

b
i∈S , then ( )X t is 

controlled by ( )tφ explicitly as  

 ( ( ( ))) ( ( ( )))
( ) ( )0

.
d ( )

( )= (0) d , or =
d

t
L X s L X t
s t

X t
X t X c s c

tφ φ+ ∫  (3.3) 

Based on the above equations, the process { ( ), 0}X t t ≥ can be analyzed by using the 

ordinary different equation (ODE) method (e.g., Anick et al. [5]). The more popular 

approach is matrix-analytic methods, which are used in this paper. 

In da Silva Soares and Latouche [22], a border with nonempty ( )n
b

S is called a sticky 

border. We shall call a border a passing border if one of ( )n
b

P− −
and ( )n

b
P+ +

is nonzero, and a 

reflecting border if one of ( )n
b

P− +
and ( )n

b
P+ −

is nonzero. 

The process has N layers separated by 1N − borders. If =1,N the process is the 

classical MMFF process. The classical MMFQ is a special case with =2N , Border 1 =0l  

is a reflecting border, and Layer 1 has an empty set of underlying states. The MMFQ can be 

considered as a two-layer MMFF process truncated at Border 1 =0l . Such an MMFF process 

is called an MMFQ since the fluid level is always nonnegative and its dynamics reflects the 

change of queue length, workload, or the age of a customer in queueing systems. 

Example 3.1. Parameters of a multi-layer MMFF process with =3N are presented in Table 

1. Figure 1(b), Figures 2, 3, 4, and Figure 5(a) are generated from this example. 
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Table 1. Parameters for Example 3.1 with =3.N  

Borders / Layers    Parameters  

Border ( 3 =L ∞ )   Not defined  

Layer 3  
(3) (3)

.

1 0.5 0 0.5
1 2 0 1= (0.5, 2, 1, 0); =
1 0 2 1
0 1 0 1

Q

 
 
 
 
 

−
−− − −

−

c

Border ( 2 =3L )  

( ) ( ) ( )

(2) (2) (2)

(2) (2) (2)

(2) (2) (2)

1 0 0.5 0.5= ; = ; = ;
0 1 0.5 0.5

= 0.1 ; = 0.4 ; = 0.5 0 ;

0.5 0.1 0.4= ; = ; = .
0.5 0.1 0.4

bb b b

b b bb

b b bb

Q Q Q

P P P

P P P

+ −

+ + + − +

− + − − −

     
     
     

     
     
     

−
−

  

Layer 2  
(2) (2)

.

1 0.5 0.5 0
1 2 1 0= (1, 0.5, 0, 0); =
0 1 1 0
1 0 0 1

Q

 
 
 
 
 

−
−− −

−

c  

Border ( 1 =0L )  

 

( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

= 1 ; = 0.5 ; = 0.5 ;

0.5 0.1 0.4= ; = ; = ;
0.5 0.1 0.4

= 0.4 ; = 0.1 ; = 0.5 .

bb b b

b b bb

b b bb

Q Q Q

P P P

P P P

+ −

+ + + − +

− + − − −

     
     
     

−

  

Layer 1  

 (1) (1)
.

1 0 1 0
0 1 0 1= (2,1, 1, 0); =
1 1 2 0
1 0 1 2

Q

 
 
 
 
 

−
−− −

−

c   

Border ( 0 =L −∞ )  Not defined  

   

In general, the multi-layer MMFF process does not have the independent incremental 

property, and its evolutions in individual layers interact with each other through the borders. 

On the other hand, it evolves conditionally independently within individual layers. This 

observation implies that one can first investigate the process in individual layers and then 

combine them together. The study of the process within independent layers is equivalent to 

that of the single layer MMFF process. Thus, we shall first introduce a number of basic 

quantities that only associated with a single layer MMFF process. 

4. Preliminaries: Basic Quantities 

In this section, we shall introduce quantities { ,Ψ ,Ψ ,K ,K ,U }U  for each layer. 

For that purpose, we assume in this section that there is only one layer, and remove the 

superscript/subscript “ n ”. We refer to Latouche and Nguyen [34] for a detailed review on 

those quantities.   
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Let αααα be the stationary distribution of infinitesimal generator Q, which is the unique 

solution to linear system =0Qαααα and =1.eαααα  We define  

,=µ cαααα  (4.1) 

which is the mean drift of the fluid flow per unit time in steady state. Intuitively, as ,t → ∞  

if > 0,µ  the process will drift to +∞ ; if < 0,µ  the process will drift to ;− ∞  and if 

= 0,µ  | ( )| .X t →∞  It has been shown mathematically rigorously that the three limits hold 

with probability one. 

Matrices Ψ and Ψ are the most important quantities in the analysis of MMFF 

processes. Many other key quantities can be expressed explicitly in Ψ and .Ψ  To define 

Ψ and Ψ , we introduce embedded regenerative processes in {( ( ), ( )), 0}.X t t tφ ≥  Define, 

0
=inf{ >0: ( )>0}t X tδ , and for > 0,n   

               1
,

{ : },

inf{ > : ( ) = 0}

inf > ( ) > 0

n n

n n

t X t

t X t

θ δ

δ θ
−=

=
 (4.2) 

which are called regenerative epochs (see Figure 2), if the underlying process ( )tφ is in 

+S  or .−S  For example, {( ( ), ( )), =1,2, ...}n nX nθ φ θ is a regenerative process with state 

space .{0} −×S Elements of matrices Ψ and Ψ are defined as follows:  

 
, 1 1

,

{ < , ( )= | ( )= }, for , ;

{ < , ( )= | ( )= }, for , .

n ni j n n

i j n n n n

P j i i j

P j i i j

θ δ φ θ φ δ

δ θ φ δ φ θ

+ −+ +

− +

Ψ = − ∞ ∈ ∈

Ψ = − ∞ ∈ ∈

S S
S S

 (4.3) 

 
Figure 2. nδ , ,nθ  and min

( )t x . 

It is easy to see that Ψ records the transition of the state of the underlying Markov chain 

Q from an epoch that the fluid level ( )X t starts to increase from zero to the next first epoch 

that ( )X t reaches zero. Matrix Ψ can be interpreted similarly. 

If 0( )tφ ∈S , the fluid flow level ( )X t can remain unchanged for a period of time. To 

analyze Ψ and Ψ , as demonstrated in da Silva Soares and Latouche [21], it is useful and 
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without loss of generality to consider the process obtained by censoring the time periods 

that ( )tφ is in 0S . The censored underlying Markov chain is defined by  

 
0

1
00 0 0

0

,= = ( ) ( , )

T T Q Q Q

T Q Q Q
T T Q Q Q

++ +− + + +− +
−

+ −

−+ −− −+ −− −

    
    
    

         

+ −  (4.4) 

where T++ , for example, contains the transition rates from +S to +S directly, which are 

given by Q++ , and indirectly via 0S , which are given by 1
0 00 0
( )Q Q Q−

+ +− . 

In the rest of this section, we work with both infinitesimal generators T and Q. For 

convenience, we also define positive diagonal matrices C+ and C− as follows:  

 = ( ) and = ( ).C diag C diag+ + − −−c c  (4.5) 

Lemma 1. (Rogers [42]) Matrices Ψ and Ψ are the minimal nonnegative solution to the 

following quadratic Riccati equations, respectively:  

 
   

1 1 1 1

1 1 1 1

= 0;

= 0.

C T C T C T C T

C T C T C T C T

− − − −
+ +− + + + − −− − −+

− − − −
− −+ − −− + + + + + −

+ Ψ + Ψ + Ψ Ψ

+ Ψ + Ψ + Ψ Ψ

 (4.6) 

We refer to Latouche and Nguyen [34], Guo [26, 27], Ramaswami [41], and Meini [37] 

for more details and algorithms for computing Ψ and .Ψ  

Second, we consider the underlying Markov chain when the fluid level reaches a new 

low/high point. We define matricesU and U as  

                   
 

1 1

1 1 .

= ;

=

C T C T

C T C T

− −
− −− − −+

− −
+ + + + +−

+ Ψ

+ Ψ

U
U

            (4.7) 

The following probabilistic interpretations ofU holds:  

 
,

,

= inf{ : ( ) < (0) }, for > 0;

( ) = { < , ( ) = | (0) = }, for , ;

( ) = { < , ( ) = | (0) = },  for , ;

x

x
x xi j

x
x xi j

t X t X x x

e P j i i j

e P j i i j

τ

τ φ τ φ

τ φ τ φ

−

− −
−

− −
+ −

−

∞ ∈

Ψ ∞ ∈ ∈

U

U

S
S S

 (4.8) 

Thus,U plays the role of an infinitesimal generator of a continuous time Markov chain for 

which the time is the minimal fluid level and the state space is .−S  That is:U is related to 

the state of the underlying Markov chain every time the fluid level reaches a new low point 

(Asmussen [6]). Define, for 0,x≥ ,  

                  
min

min min

( ) = min{ : ( ) = };

( ) = ( ( )),

t x t X t x

i x t xφ

−
 (4.9) 

where min
( )i x is the state of the underlying Markov chain at the first time epoch that ( )X t  
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reaches .x−   

Lemma 2. (Asmussen [6]) If 0,µ ≤ min
{ ( ), 0}i x x≥ is a continuous time Markov chain with 

infinitesimal generator .U  If > 0,µ  then min
{ ( ), 0}i x x≥ is an absorption Markov chain 

with state space { },− ∆∪S where ∆ is defined as an absorption state, and infinitesimal 

generator  

                              .

0 0

− − 
 
 

∆  

eU US
 (4.10) 

    Similarly, one can consider the underlying Markov chain when the fluid level reaches 

a new high point, which is related to a continuous time Markov chain with infinitesimal 

generator (or subgenerator) .U  

Third, we consider matrices K and ,K  which are defined as  

                  
 

1 1

1 1

= ;

= .

C T C T

C T C T

− −
+ ++ − −+

− −
− −− + +−

+ Ψ

+ Ψ

K
K

 (4.11) 

Matrix K is associated with numbers of visits to a certain fluid level and state during first 

passage periods. We assume that 0
=0δ (then (0) =0X ) and (0) = iφ .   

• For ,i j +∈S and > 0,x  we define ,( ( ))i jN x++ as the mean number of visits of the 

process ( ( ), ( ))X t tφ to state ( , )x j from below before ( )X t returns to zero. This type 

of visits are called upcrossings of fluid level .x   

• For ,i +∈S ,j −∈S  and > 0,x  we define ,( ( ))i jN x+− as the expected number of visits 

of the process ( ( ), ( ))X t tφ to state ( , )x j from above before ( )X t returns to zero. Such 

visits are called downcrossings of fluid level .x   

• For ,i j −∈S and 0,x<  we define ,( ( ))i jN x−− as the mean number of visits of the 

process ( ( ), ( ))X t tφ to state ( , )x j from above before ( )X t returns to zero.  

• For ,i −∈S j +∈S , and 0,x<  we define ,( ( ))i jN x−+ as the expected number of visits 

of the process ( ( ), ( ))X t tφ to state ( , )x j from below before ( )X t returns to zero.  

Lemma 3. (Ramaswami [41]) For > 0,x  we have (i) ( )=exp{ };N x x++ K and (ii) 

( )= ( ) =exp{ }N x N x x+− ++ Ψ ΨK . For 0,x<  we have (iii) ( ) = exp{ ( )};N x x−− −K  and (iv) 
  ( ) = ( ) = exp{ ( )}N x N x x−+ −− Ψ − ΨK .  

Now, we summarize the relationship between µ and our basic matrices, which will be 

referenced repeatedly throughout this paper.  

Lemma 4. (Rogers [42], Asmussen [6], Ramaswami [41]) The relationships between µ  

and basic quantities are as follows.   
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4.1  If > 0,µ  then we have (i) <Ψe e and  =Ψe e ; (ii) <0eU and  = 0eU ; and (ii)

K is non-invertible and K is invertible.  

4.2  If 0,µ =  then we have (i) Ψ =e e and  =Ψe e ; (ii) 0=eU and  = 0eU ; and (iii) 

K and K are non-invertible.  

4.3  If 0,µ <  then we have (i) Ψ =e e and Ψ <e e ; (ii) 0=eU and  0<eU ; and (iii) 

K is invertible and K is non-invertible.  

For extensions to a multi-layer MMFF process, we need quantities when the process is 

constrained to an interval, say ( , ).a b  Therefore, we define, for < < ,a x b  

• ( , )
,( ( ))a b

i jN x+ be the expected number of crossings of level x at state j∈S before 

the process reaches level a or level ,b  given that the process started in ( , )a i for 

.i +∈S  (See Figure 3)  

• ( , )

,( ( ))
a b

i jN x− be the expected number of crossings of level x at state j∈S before 

the process reaches level b or level ,a  given that the process started in ( , )b i for 

.i −∈S  

 

Figure 3. Upcrossings of level x , starting from level = 0,a without visiting leve =9.b  

Matrix ( , )( )a bN x+ ( ( , )
( )

a b
N x− ) can be divided into two subblocks ( , ) ( )a bN x++ ( ( , )

( )
a b

N x− + ) 

for upcrossings and ( , ) ( )a bN x+− ( ( , )
( )

a b
N x− − ) for downcrossings according to j +∈S or ,j −∈S  

respectively.  

Lemma 5. (da Silva Soares and Latouche [21]) For < < ,a x b  we have  

               
    

( , )( ) ( )

( , )( ) ( )

.

( ) 0

=

0( )

a bb a x a

a bb a b x

N xI Ie e

Ie I eN x

− −
+

− −
−

      
      
      

           

ΨΨ

ΨΨ

K K

K K
 (4.12) 
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The first matrix on the left hand side in the above equation is invertible if 0.µ ≠   

For the first passage probabilities from one fluid level to another (e.g., from a to b  or 

vice versa), we define   

 • ( )b a−
+ −Ψ  is defined similar to Ψ except that the process does not reach fluid level b   

and the process starts in fluid level ;a ( )b a−
−+Ψ is defined similar to Ψ except that 

the process does not reach fluid level a and the process starts in fluid level .b   

   • ( )b a−
++Λ is defined as the probabilities for the process to go from level a to level b     

before returning to level .a  ( )b a−
− −Λ is defined as the probabilities for the process to 

go from level b to level a before returning to level .b   

Lemma 6. (da Silva Soares and Latouche [21]) The matrices of first passage probabilities 

satisfy the following equations:  

 

   





( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

.=

b a b a b a b a

b a b a b a b a

I e e

e I e

− − − −
++ +−

− − − −
−+ −−

    
    
    
         

Λ Ψ ΨΨ

Ψ ΨΨ Λ

U U

U U
 (4.13) 

The second matrix on the left-hand-side of the above equation is invertible if 0.µ ≠   

Although Lemmas 5 and 6 are developed for MMFF processes with only one layer, 

they play a key role in the analysis of multi-layer MMFF processes and will be used 

repeatedly in the next section. 

5. Joint Stationary Distribution and Algorithm 

In this section, we review and refine an algorithm for computing the joint stationary 

distribution of the fluid level and the state of the underlying Markov chain developed in da 

Silva Soares and Latouche [21]. A censored CTMC and a linear system are introduced for 

border probabilities and limits of the density function, which are constants and coefficients 

used in the solutions of the joint stationary distribution. Define, for < < ,x−∞ ∞   

( )

( )

( )

( ) ( )

( )

( )

{ ( ) = , ( ) = | (0), (0)}, for , =1,2, ..., 1;

{ ( ) < , ( ) = | (0), (0)}, for , =1,2, ..., ;

d ( )
( ) , for , =1,2, ..., .

d

lim

lim( )

n
n b

n

n
jn n

j

n
j

t

n
j

t

P X t l t j X j n N

P X t x t j X j n N

g x
x j n N

x

p

g x

φ φ

φ φ

π

→∞

→∞

∈ −

∈

= ∈

=

= S

S

S

 (5.1) 

Let ( ) ( ) ( )= ( : ),n n n
j b

p j∈p S  for =1,2, ..., 1,n N − , and for < <x−∞ ∞ ,  

( ) ( ) ( )
.( ) = ( ( ): ), for =1,2, ...,n n n

jx x j n Nπ ∈ππππ S  (5.2) 

In the rest of the section, we focus primarily on the joint density function 

Queueing Models and Service Management

49



 

( ) ( ) ( )( ) = ( ( ): ),n n n
jx x jπ ∈ππππ S for =1,2, ..., ,n N  and the border probabilities 

( ){ , =1,2, ..., 1}n n N −p . Our analysis consists of five steps, with a separate subsection for 

each step.   

• In Subsection 5.1, we use the semi-Markov chain theory to establish the relationship 

between the density function, the border probabilities, and an integral of a conditional 

density function;  

• In Subsection 5.2, we construct a censored CTMC to find the border probabilities;  

• In Subsection 5.3, we develop a linear system for the limits of the density function;  

• In Subsection 5.4, we put things together to derive expressions for the joint density 

function; and  

• In Subsection 5.5, we present the computation steps for computing the density 

function, distribution function, and the mean fluid level.  

5.1. Density function and number of level crossing 

Let   

• ( , )jf x t be the density at the state ( , )x j at time ,t  given the initial state 

( (0), (0))X φ ; and 

• ( )
,

( , , )n
k j

y x tγ be the taboo conditional density of ( , )x j at time ,t  avoiding both 

Border 1n
l − and Border nl in the time interval (0, ),t  given that the initial state is 

( , ),y k  for 1
< < nn

l x l− and 1
=

n
y l − or .nl   

We note that ( , ) { < ( )< , ( )= }jf x t h P x X t x h t jφ≈ + for initial condition ( (0), (0)),X φ  and 

( )
,

( , , )n
k j

y x t hγ  is approximately the taboo conditional probability that the fluid level is in 

( , )x x h+  at time .t  

For 1
,< < nn

l x l− we condition on the state at which the process is either in Border 1n
l −  

or nl for the last time before reaching state ( , )x j at time .t  After that time point, denoted 

as ,t τ− , the process will be between the two borders until it reaches ( , )x j at t (see Figure 

4). At the point ,t τ−  the fluid level either touches one of the borders and enters into the 

interval 1
( , )nn
l l− or goes from one of the two borders into the interval 1

( , ),nn
l l− a total of six 

cases. The corresponding probabilities for the occurrence for the six cases are given 

approximately as follows.  
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(a) ( )n
i −∈S  (b) ( 1)n

i
−

+∈S  (c) ( 1)n

b
i

−∈S  

(d) ( 1)n
i

+

−∈S  (e) ( )n
i +∈S  (f) ( )n

b
i∈S  

 

Figure 4. The fluid process in (0, )t with ( ( ), ( )) = ( , )X t t x jφ and the time epoch .t τ−  

     

1. From ( ),ni −∈S  the probability is 1 1(0), (0) ( )

( )

{ < ( ) < d , ( ) = }
d

d

in nX n
in

i

P l X t l c t i
c

c

φ τ τ φ τ
τ

τ
− −− + −

, which 

can be written in density function as: ( )
1

( , ) dn
i in

f l t cτ τ− + − . Then the process can be 

reflected at Border 1n
l − at epoch t τ− with (matrix) probability ( 1)

.
n
b

P −
− +

 (Remark: In state 

,i  when the time elapses dτ units, the fluid level changes by d .ic τ  That is why we need 

to use d ,ic τ  instead of only dτ in the expression.) (See Figure 4(a).) 

2. From ( 1)
,

ni −
+∈S  the probability is 1 1(0), (0) ( 1)

( 1)

{ d < ( ) < , ( ) = }
d ,

d

in nX n
in

i

P l c X t l t i
c

c

φ τ τ φ τ
τ

τ
− − −

−

− − −
 

which can be written in density function as ( 1)
1

( , ) d .n
i in

f l t cτ τ−
− − −  Then the process can 

upcross Border 1n
l − at epoch t τ− with (matrix) probability ( 1)

.
n
b

P −
+ +

 (See Figure 4(b).) 

3. From ( 1) ,n
b

i −∈S  the probability is ( 1).n
ip −  Then the process can enter Layer n at epoch 

t τ− with (matrix) probability ( 1)d .n
b

Q τ−
+

 (See Figure 4(c).) 

Queueing Models and Service Management

51



 

4. From ( 1),ni +
−∈S  the probability is (0), (0) ( 1)

( 1)

{ < ( ) < d , ( ) = }
d

d

n n iX n
in

i

P l X t l c t i
c

c

φ τ τ φ τ
τ

τ
+

+

− + −
, 

which can be written in density function as ( 1)( , ) d .n
ni if l t cτ τ++ −  Then the process can 

downcross Border nl at epoch t τ− with (matrix) probability ( ) .n
b

P− −
 (See Figure 4(d).) 

5. From ( ),ni +∈S  the probability is (0), (0) ( )

( )

{ d < ( ) < , ( ) = }
d

d

n niX n
in

i

P l c X t l t i
c

c

φ τ τ φ τ
τ

τ

− − −
, which 

can be written in density function as ( )( , ) d .n
ni if l t cτ τ− −  Then the process can be 

reflected at Border nl at epoch t τ− with (matrix) probability ( ) .n
b

P+ −
 (See Figure 4(e).) 

6. From ( ),n
b

i∈S  the probability is 
( ).n
ip  Then the process can enter Layer n at epoch 

t τ− with (matrix) probability ( )d .n
b

Q τ−
 (See Figure 4(f).)  

Using the arguments given in da Silva Soares and Latouche [22], given ( (0), (0)),X φ  

and conditioning on the state change (i.e., i k→ ) at epoch ,t τ−  we have, for 1
< < ,nn

l x l−   

 

( ) ( 1) ( )
1 1, ,0

( ) ( )

( 1) ( 1) ( )
1 1, ,0

( 1) ( )

( 1) ( 1)
,0

( 1) ( )

( , ) = ( , ) ( ) ( , , ) d

( , ) ( ) ( , , ) d

( )

t
n n n

j i in nb i k k j
n ni k

t
n n n

i in nb i k k j
n ni k

t
n n

i b i k k
n ni k

b

f x t h f l t c P l x h

f l t c P l x h

p Q

τ γ τ τ

τ γ τ τ

γ

−
− −− +

∈ ∈− +
− −

− −+ +
−∈ ∈+ +

− −
+

−∈ ∈ +

+ −

+ − −

+

∑ ∑ ∫

∑ ∑ ∫

∑ ∑ ∫

S S

S S

S S

( )
1,

( 1) ( ) ( )
, ,0

( 1) ( )

( ) ( ) ( )
, ,0

( ) ( )

( ) ( ) ( )
, ,0

( ) ( )

( , , ) d

( , ) ( ) ( , , ) d

( , ) ( ) ( , , ) d

( ) (

n
nj

t
n n n

n ni i b i k k j
n ni k

t
n n n

n ni i b i k k j
n nki

t
n n n

ni b i k k j
n nki

b

l x h

f l t c P l x h

f l t c P l x h

p Q l

τ τ

τ γ τ τ

τ γ τ τ

γ

−

+
− −

+∈ ∈− −

+ −

∈∈ −+

−

∈∈ −

+ + −

+ − −

+

∑ ∑ ∫

∑ ∑ ∫

∑ ∑ ∫

S S

SS

SS
, , ) d

( , ) ( ),j

x h

g x t h o h

τ τ

+ +

 (5.3) 

where ( , )jg x t is the conditional density such that the fluid level is always in Layer n in 

(0, ).t  Recall that ( , ) { < ( )< , ( )= }jf x t h P x X t x h t jφ≈ + for initial condition ( (0), (0)),X φ  

and ( )
,

( , , )n
j k

y x t hγ is approximately the taboo conditional probability that the fluid level is in 

( , )x x h+ at time .t  We have the term ( )o h because in a short period of time ( )/ ,n
jh c  

there can still be more than one transitions occurring. The sum of the probabilities of all 

those events is ( ).o h  

Let ( )nαααα be the stationary distribution of ( ) ,nQ  for =1,2, ..., .n N  The mean drift of 

the process associated with ( ) ( ){ , }n nQc is defined as ( ) ( )= .n n
nµ cαααα  

We assume that 1
>0,µ <0,Nµ  and the process is irreducible. Then the stochastic 
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process is ergodic. Consequently, the joint stationary distribution exists, is given by the limit 

of equation (5.3), and is independent of the initial status at =0.t  Letting 0h→ and t → ∞  

in equation (5.3), in matrix form, we obtain:  

Theorem 1. We assume that 1
>0,µ <0,Nµ  and the process is irreducible. Then the joint 

stationary distribution exist. For 1
< < nn

l x l− and =1,2, ...,n N , we have  

( )
( )

( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )
1 1 10

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

( ) = ( ) ( ) ( , , )d

( ) ( ) ( , , )d .

n n n n n n n n n n
n n nb b b

n n n n n n n n n
n n nb b b

x l C P l C P Q l x s s

l C P l C P Q l x s s

γ

γ

∞
− − − − − −

− − + +− − −− + + + +

∞
+ +

− − + +− − + − −

+ +

+ + +

∫
∫

p

p

π π ππ π ππ π ππ π π

π ππ ππ ππ π
 (5.4) 

(Remark: For notational convenience, we have added (1)
0

( , , ) = 0l x sγ and ( ) ( , , ) = 0N
Nl x sγ  

to the above equation. Recall that the underlying Markov chain { ( ), 0}t tφ ≥ is irreducible 

when the fluid level is in between a certain layer.)  

Next, we find closed form solutions for the two integrals in the above expression. For 

= 2,3, ...,n N , the integrands can be approximated by: for ( )nk +∈S and ( ),nj +∈S   

( ) 1 0
1,

0{ ( )= , < ( )< ,0< < , ( )= }
1

,

{ < ( ) < d , < ( ) < ,0< < , ( ) = | }
( , , )d d

d
d

[1 | ]
d

nn n
nk j

X s x l X t l t s s jnn

P x X s x x l X t l t s s j F
l x s s s

x
s

F
xφ

φ
γ −

−

−

 
  
 

+
≈

≈E

 (5.5) 

where 0 1
={ (0)= , (0)= },

n
F X l kφ−  and

{ }
1 ⋅

is the indicator function. We remark that 

( )d / (d ) =1/ n
js x c  if ( ) =s jφ . For ( )nk +∈S and ( ),nj +∈S  we obtain (abusing the notation a 

little bit)  

0{ ( d )= , < ( )< ,0< < d , ( d )= }
1( ) =1

1, ( )0

( , )
1

,

( )

d 0

[1 | ]

( , , )d

( ( ))

X m s x l X t l t m s m s jnnn m
nk j n

j

l lnn
k j

n
j

s

F

l x s s
c

N x

c

φ

γ

∞

× × ×∞ −

−

−
++→

→

≈
∑

∫
E

 (5.6) 

Intuitively, the left-hand-side can be interpreted as the (conditional) total time the process 

visiting state ( , ).x j  Since the fluid generated per unit time is ( )n
jc for state ,j  the time to 

generate one unit of fluid is ( )1/ .n
jc  Thus, the right hand side is also the (conditional) total 

time the process visiting state ( , ).x j  

For ( )nk +∈S and ( ),nj −∈S  similarly, we obtain 
( , ) ( )1

,
( ( )) / .

l l nnn
jk j

N x c−
+−  For ( )nk +∈S  

and ( )
0 ,nj∈S  the process will be in a state in ( )n

+S or ( )n
−S  before entering ( )

0 .nS  By 

conditioning on the state at such time points, we obtain, for ( )nk +∈S and ( )
0

nj∈S ,  
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( , ) ( , )( ) ( ) ( ) ( )1 1 11 1
1 0 0 00,0 ,

( , , )d = ( ( ) ( ) )( ) .
l l l ln n n nn nn n

nk j
k j

l x s s N x C Q N x C Q Qγ
∞

− − −− −
++ + +− −− + −

 
 
 

+ −∫  (5.7) 

In matrix form, we obtain, for = 2,3, ...,n N ,  

( )
10

( ) ( ) ( )1 1( ) 1
0 00( , ) ( , )

1 1

( ) ( ) ( ) ( )1 1 1
0 00

( , , )d

0 ( ) ( )( )
= ( ), ( ) .

0 ( ) ( ) ( )

n
n

n n nn

l l l ln nn n

n n n n

l x s s

C Q QC
N x N x

C C Q Q

γ
∞

−

− −−
++ +

− −
++ +−

− − −
− − −

 
  

  
  

 

−

−

∫
 (5.8) 

Similarly, we have, for =1,2, ..., 1n N − ,  

 

( )

0
( ) ( ) ( )1 1( ) 1

0 00( , ) ( , )
1 1

( ) ( ) ( ) ( )1 1 1
0 00

( , , )d

0 ( ) ( )( )
= ( ), ( ) .

0 ( ) ( ) ( )

n
n

n n nn

l l l ln nn n

n n n n

l x s s

C Q QC
N x N x

C C Q Q

γ
∞

− −−
++ +

− −
−−−+

− − −
− − −

 
  
  

  
 

−

−

∫
 (5.9) 

Combining equations (5.8) and (5.9) with Lemma 5, we obtain  

Lemma 7. Matrices of the integrals satisfy the following equation:  

 

  

( ) ( )( ) ( )1 10

( ) ( ) ( )( )
1

0

( ) ( ) ( ) ( ) ( ) ( )1 11

( ) ( )( ) ( ) ( )1 1( )

( , , )d

( , , )d

0 ( ) ( )

=

( ) ( )0

n nl l nn n n

n n nl ln n n

n x l n n n nn

n nn n nl xn

I l x s se

l x s se I

C Ce

C Ce

γ

γ

∞
− − −

∞
− −

− − −−
+ −

− −−
+ −

  
  
  
  
       

               

Ψ

Ψ

Ψ Γ

Ψ Γ

∫

∫

K

K

K

K

.


 (5.10) 

where  

( )
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 0 00

( )( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 0 00

( ) ( ) ( ) ;

( ) ( ) ( ) .

n n n n n n n

nn n n n n n

C Q C Q Q

C Q C Q Q

− − −
+ −+ −

− − −
+ −+ −

 
 
 

Γ = + Ψ −

Γ = Ψ + −
 (5.11) 

If 0,nµ ≠  the first matrix on the left hand side of equation (5.10) is invertible.  

According to Theorem 1, to find the joint stationary distribution, we still need the 

following sets of border probabilities and limits of the density function in vector form:   

1. ( ){ , =1,2, ..., }n n Np ; (Remark: We use ( ) =0Np for convenience.)  

  2. ( ) ( ) ( ) ( )
1 1

{ ( ), ( ), ( ), ( ), =1,2, ..., }n n n n
n nn n

l l l l n N+ − + −− −π π π ππ π π ππ π π ππ π π π  (To be called density limits).  

We find those vectors in the next two subsections. 
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5.2. An embedded discrete time Markov chain for border transitions and a censored 

continuous time Markov chain for border probabilities 

We want to find out, after the process leaves a border, which border it will enter next. 

For that purpose, we introduce two fictitious sets of states for Border nl : (i) a set of states 

“above” the border: which is ( 1)n+
+S ; and (ii) a set of states “below” the border: which is 

( )n
−S . The “above” set contains all the states that the MMFF process leaves Border nl by 

increasing the fluid level. The “below” set contains all the states that the MMFF process 

leaves Border nl by decreasing the fluid level. Plus the border states ( )n
b

S , we have three 

sets of states associated with each border. We arrange the states in the order: (1) (2)( ,− +S S , 

(2) (3),− +S S , ..., ( 1) ( ),N N−
− +S S , (1) ( 1), ..., )N

b b
−S S . 

We construct a discrete time Markov chain such that the border states are absorption. 

The embedded discrete time Markov chain is defined at the time epochs the MMFF process 

is leaving (e.g., upcrossing, downcrossing, reflecting, and entering) a border. The transition 

probability matrix D of the Markov chain has the following structure:  

,
0

A B

I

 
  
 

=D  (5.12) 

where matrix A contains all the transition blocks from (1) (2)
,{ ,− +S S (2) (3)

,,− +S S ..., ( 1) ( ), }N N−
− +S S  

to themselves, and matrix B contains all the transition blocks from (1) (2)
,{ ,− +S S (2) (3)

,,− +S S ...,

( 1) ( ), }N N−
− +S S  to (1) ( 1){ , ..., }N

b b
−S S . The transition blocks in A and B are identified explicitly 

as follows.   

• From ( )n
−S (i.e., the set below Border nl ), the process can   

1. return to itself (i.e., ( )n
−S ) with probabilities in matrix ( ) ( )1 ,

l ln nn
b

P
− −

− + + −Ψ for 

=1,2,..., 1n N− ;  

2. go to the set above Border nl (i.e., ( 1)n+
+S ) with probabilities in matrix 

( ) ( )1 ,
l ln nn

b
P

− −
− + + +Ψ  for =1,2, ..., 1n N− ;  

3. enter Border nl (i.e., 
( )n

b
S ) with probabilities in matrix ( ) ( )1 ,

l ln nn
bb

P
− −

− + +Ψ for 

=1,2,..., 1n N− ;  

4. go to the set above Border 1n
l − (i.e., ( )n

+S ) with probabilities in matrix 

( ) ( 1)1 ,
l ln nn

b
P

− −−
− − − +Λ  for =2,3,...,n N ;  

5. go to the set below Border 1n
l − (i.e., ( 1)n−

−S ) with probabilities in matrix 

 ( )
1 ( 1) ,

l l
n n n

b
P

− − −
− − − −Λ  for =2,3,...,n N ; and  

6. enter Border 1n
l − (i.e., ( 1)n

b
−S ) with probabilities in matrix ( ) ( 1)1 ,

l ln nn
bb

P
− −−

− − −Λ  for 

=2,3,...,n N .  
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• From ( 1)n+
+S  (i.e., the set above Border nl ), the process can   

1. return to itself (i.e., ( 1)n+
+S ) with probabilities in matrix 

( ) ( )1 ,
l l nnn

b
P

−+
+ − − +Ψ  for 

=1,2,..., 1n N− ;  

2. go to the set below Border nl (i.e., ( )n
−S ) with probabilities in matrix 

( ) ( )1
l l nnn

b
P

−+
+ − − −Ψ , 

for =1,2,..., 1n N − ;  

3. enter the Border nl (i.e.,
( )n

b
S ) with probabilities in matrix 

( ) ( )1
l l nnn

bb
P

−+
+ − +Ψ , for 

=1,2,..., 1n N− ;  

4. go to the set above Border 1n
l + (i.e., ( 2)n+

+S ) with probabilities in matrix 

( ) ( 1)1
l l nnn

b
P

− ++
+ + + +Λ , for =1,2,..., 2n N − ,  

5. go to the set below Border 1n
l + (i.e., ( 1)n+

−S ) with probabilities in matrix 

( ) ( 1)1
l l nnn

b
P

− ++
+ + + −Λ , for =1,2,..., 2n N − ; and  

6. enter Border 1n
l + (i.e., ( 1)n

b
+S ) with probabilities in matrix 

( ) ( 1)1
l l nnn

bb
P

− ++
+ + +Λ , for 

=1,2,..., 2n N − .  

It is easy to see that
1( )I A B−− contains the absorption probabilities from those “above” 

or “below” sets to the border sets. Let  

( )

1 ( , )( )

( 1) ( , )

( ) =
,

n
b

m nm
b

m m n
b

I A B H

H

−
−−

+
+ +

 
 
 
 
 
 

−
⋮⋮

⋯ ⋯
⋯ ⋯

⋮ ⋮

S

S
S

 (5.13) 

where ( , )m n
b

H−
contains the probabilities that the first border entered by the original MMFF 

process, started from the set below Border ml , is
( )

,
n

b
S  and ( , )m n

b
H+

contains the 

probabilities that the first border reached by the original MMFF process, started from the 

set above Border ml , is 
( )

.
n

b
S  

Now, we construct a censored continuous time Markov chain pQ for the border 

probabilities ( ){ , =1, 2, ..., 1}.n n N −p  The CTMC pQ is obtained by censoring out the 

periods that the original MMFF process is between borders. Thus, the state space of pQ

constitutes (only) all the border states 
(1) (2) ( 1)

.... N
b b b

−∪ ∪ ∪S S S  The infinitesimal generator

pQ can be divided into blocks as follow:  

 

( )

( )
,

=
,

n
b

m
m nb

Q
 
 
  
 

p
⋮

⋯ ⋯
⋮

S

SQ  (5.14) 
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where, for , =1,2,..., 1m n N− ,  

 

( ) ( ) ( , ) ( ) ( , )

,
( ) ( , ) ( ) ( , )

,  if = ;

=

if .,

m m m m m m m
bb b b b b

m n
m m n m m n

b b b b

Q Q H Q H m n

Q

m nQ H Q H

− − + +

− − + +







+ +

≠+

 (5.15) 

Lemma 8. Border probabilities ( ){ , =1,2,..., 1}n n N −p satisfies (1) (2) ( 1)( , ,..., ) = 0.N −
pp p p Q   

In Algorithms I and II, we solve the linear system 0=pxQ and =1xe for vector x  first. 

Then we normalize vector x to determine the border probabilities ( ){ , =1,2, ...,n np 1}N − . 

5.3. A linear system for density limits 

Next, we introduce a linear system to find the density limits ( ) ( )
1 1{ ( ), ( ),n n

n nl l+ −− −π ππ ππ ππ π
( ) ( )( ), ( ), =1,2, ..., }.n n

n nl l n N+ −π ππ ππ ππ π  Recall that ( ) ( ) ( )( )= ( ( ), ( ),n n nx x x+ −π π ππ π ππ π ππ π π ( )
0 ( )).n xππππ Thus, to 

find the density limits, it is sufficient to determine ( ) ( )
1

{ ( ), ( )}n n
nn

l l−π ππ ππ ππ π . For all borders 

=1,2,..., 1,n N− we have two equations: one for ( )( )n
nlππππ and one for ( 1)( ).n

nl
+ππππ  

Alternatively, for each density function ( )( ),n xππππ  for =1,2, ..., 1,n N −  there are two 

equations: one for ( )
1( )n

nl −ππππ (except for =1n ) and one for ( )( )n
nlππππ (except for =n N ). 

Therefore, we have in total 2 2N − equations for 2 2N − unknown vectors. Denote by  

( ) ( )
1

( ) ( )
.

= ( ), for = 2,3, ..., ;

= ( ), for =1,2, ..., 1

n n
L n

n n
nU

l n N

l n N

−

−

v

v

ππππ

ππππ
 (5.16) 

Vector ( )n
Lv can be divided into three subvectors as ( ) ( ) ( ) ( )

, , ,0= ( , , ),n n n n
L L L L+ −v v v v  where 

( ) ( )
, 1= ( ),n n

L n
l++ −v ππππ ( ) ( )

, 1= ( ),n n
L n

l−− −v ππππ and ( ) ( )
,0 0 1= ( ).n n

L n
l −v ππππ  The same relationship holds 

between ( )n
Uv and ( )( ):n

nlππππ ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,0 0= ( , , ) = ( ( ), ( ), ( )).n n n n n n n

n n nU U U U
l l l+ −+ −v v v v π π ππ π ππ π ππ π π  Denote 

by ( ) ( ) ( )= ( , ),n n n
L Uv v v for .=1,2, ...,n N  Note that we define (1) = 0Lv and ( ) = 0.N

Uv  We 

define vectors:  

( ) ( 1) ( 1) ( )
1 1 10

( ) ( 1) ( 1) ( )
2 10

( ) ( ) ( ) ( )
3 10

( ) ( ) ( ) ( )
4 0

= ( , , )d ;

= ( , , )d ;

= ( , , )d ;

= ( , , )d .

n n n n
n nb

n n n n
nnb

n n n n
n nb

n n n n
n nb

Q l l s s

Q l l s s

Q l l s s

Q l l s s

γ

γ

γ

γ

∞− −
− −+

∞
− −

−+

∞

−−

∞

−

Ξ

Ξ

Ξ

Ξ

∫
∫

∫
∫

p

p

p

p

 (5.17) 

All the above four vectors are of size ( )| |nS . We define matrices                             
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( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )
1 1 1 2 10 0

( ) ( ) ( 1) ( ) ( ) ( ) ( 1)
3 1 1 40 0

;= 0 ( , , )d ; = 0 ( , , )d
0 0

0 0
= ( , , )d ; =

0 0

n n n n
b b

n n n n
nn n n

n n n n n n n
n nb b

C P C P
M l l s s M l l s s

M C P l l s s M C P

γ γ

γ

− − − −
+ +∞ ∞+ + + +

− − −

∞
− −

− −− −− + − +

   
   
   
   
   
   
   
      
   

∫ ∫

∫ ( )
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
5 1 60 0

( ) ( 1) ( ) ( ) ( ) ( 1) ( )
7 1 80

( , , )d ;

= 0 ( , , )d ; = 0 ( , , )d ;
0 0

0 0
= ( , , )d ; =

0 0

n
nn

n n n n
b b

n n n n
n n nn

n n n n n n n
n nb b

l l s s

C P C P
M l l s s M l l s s

M C P l l s s M C P

γ

γ γ

γ

∞

−

+ +∞ ∞+ − + −

−

∞
+ +

− −−− − − −

   
   
   
   
   
  
  
    
  

∫

∫ ∫

∫ ( )

0
( , , )d .n

n nl l s sγ
∞





∫

 (5.18) 

Matrices ( )
1

nM and ( )
2

nM are ( 1)| |n−S by ( )| |nS matrices; ( )
3 ,nM ( )

4 ,nM ( )
5 ,nM and ( )

6
nM  

are ( )| |nS by ( )| |nS matrices; and ( )
7

nM and ( )
8

nM are ( 1)| |n+S by ( )| |nS atrices. 

By Theorem 1, the following linear system for the density limits can be established,  

(1) (2) (1) (1) (1) (1)
8 6 4

( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( ) ( )
7 53 1 1 3

( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( ) ( )
4 2 2 8 6 4

( ) (

= ;

= , = 2, ..., 1;

= , = 2, ..., 1;

=

U L U

n n n n n n n n n n n
L L U L U

n n n n n n n n n n n
U L U L U

N N
L L

M M

M M M M n N

M M M M n N

− +

− +

+ +Ξ

+ +Ξ + + +Ξ −

+ +Ξ + + +Ξ −

v v v

v v v v v

v v v v v

v v ) ( ) ( 1) ( ) ( )
3 1 1

.N N N N
U

M M−+ +Ξv

 (5.19) 

Further, the above linear system can be written as follows:  

 

( )

( )

(1) (1) 1
8 6

(1) (1) (1) (2)1
4 6

( ) ( ) ( ) ( ) ( ) ( 1)
1 3 2 4

( ) ( )
1 2

1
( ) ( )
3 4( ) ( )

( 1)
7 8

( ) ( )
5 6

0 ( )
0, ( ) ;

0 0

0 0

,

, =2,..., 1;
0 0

n n n n n n

n n

n n

n n
n

n n

M I M
I M

M M

I M M
M M n N

M I M

−

−

−

−

+

 
 
 
 
 

  
  
  

   

 
   
      
 

−
= Ξ − +

= Ξ +Ξ Ξ +Ξ +

− −
+ −

− −

v v

v v

v

( )( ) ( ) ( ) ( 1)1
1 3

( ) ( ) 1
1 3

0 0

( ) , 0 .
( ) 0

N N N N

N N

I M

M I M

−−

−

 
 
 
 
 

= Ξ − +
−

v v

 (5.20) 
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Define  

 

( )

( )

( )

(1) (1) 1
1 4 6

1
( ) ( )
3 4

( ) ( ) ( ) ( )
1 3 2 4

( ) ( )
5 6

( ) ( ) 1
1 3

= 0, ( ) ;

= , , = 2,..., 1;

= ( ) , 0 ,

n n

n n n n
n

n n

N N
N

I M

I M M

n N

M I M

I M

−

−

−

 
 
 
 
 

∆ Ξ −

− −
∆ Ξ +Ξ Ξ +Ξ −

− −

∆ Ξ −

 (5.21) 

(1) (1) 1
8 6

1,2

1
( ) ( )
3 4

, 1
( ) ( ) ( ) ( )
1 2 5 6

1
( ) ( )( )( )
3 47 8

, 1
( ) ( )
5 6

, 1
(1) ( ) 1
1 3

0 ( )
= ;

0 0

0 0

= ;

= ;

0 0

0 0

=
( ) 0

n n

n n
n n n n

n nnn

n n
n n

N N
N

M I M

I M M

M M M I M

I M MMM

M I M

M I M

−

−

−

−

+

−
−

 
 
 
 
 

  
  
  

    

  
  
  

      






−
Φ

− −
Φ

− −

− −
Φ

− −

Φ
−

,




 
 



 (5.22) 

and  

 ( )

 

, 1
1

, 1 1 , 1

1
1 , 1 1 , 1

= ;

= , for =2,3,..., 1;

= ;
=( )( ) , for = 2,3,..., 1.

N N N

n n n n n n

N N

n nn n n n n n

I n N

I n N

−
−

− + +

−
+ + + +

ϒ Φ

ϒ Φ −ϒ Φ −

∆ ∆
∆ ∆ +∆ Φ −ϒ Φ −

 (5.23) 

Finally, we obtain  

 ( )


1
(1) (1) (1)

21 1,2 2 1,2

( ) ( ) ( ) ( 1)
,

( , ) = = ( ) ;

( , ) = = , for = 2,3, ...,

L U

n n n n
n nL U

I

n N

−

−

∆ + ∆ Φ − ϒ Φ

∆ + ϒ

v v v

v v v v

 (5.24) 

which can be used to compute the density limits recursively. We note that the invertibility 

of the matrices in the above equations is guaranteed by the existence of the joint stationary 

distribution. 

5.4. Putting things together and results 

Now, we assume that 1 >0µ and <0.Nµ  Then the stationary distribution of the 

MMFF process exists. With all the vectors in place, we now find the expressions for the 
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density functions and distribution functions. By Theorem 1, we can write  

 ( ) ( ) ( ) ( ) ( )
10 0

.( )= ( , , )d ( , , )dn n n n n
nL Un

x l x s s l x s sγ γ
∞ ∞

− +∫ ∫w wππππ  (5.25) 

where (1) = 0,Lw  ( ) = 0,N
Uw  and for =1,2, ..., 1,n N −   

 

( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )
, ,

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )

( 1) (
,

( ) ( )

;

( ) ( )

n n n n n n n n n
n nU b b b

n n n n n n n n
L Ub b b

n n n n n n n n n
n nL b b b

n n
L

C P C P Q

C P C P Q

C P C P Q

C

l l

l l

+ +
− − + +− − + − −

+ +
− +− +− − + − −

+ + +
− − + +− + + + +

+
−−

= + +

= + +

= + +

=

w

v v

v

p

p

w p

π ππ ππ ππ π

π ππ ππ ππ π
1) ( ) ( ) ( ) ( ) ( ) ( )

, ;n n n n n n
Ub b b

P C P Q+
++− + + + +

+ +v p

 (5.26) 

Then we define, for =1,2, ..., ,n N   

 

1
( ) ( ) ( )1

( ) ( )( )
1

( ) ( ) ( ) ( )( , )=( , ) .

n l l nn n

n nl ln n

n n n n
L U

I e

e I

−
− −

− −

−+

 
 
 
 
 
 

Ψ

Ψ

w wu u

K

K

 (5.27) 

Combining equations (5.25)-(5.27) and Lemma 7, we obtain a closed form expression 

of the joint density function. 

Theorem 2. We assume that 1 >0,µ <0,Nµ  and nµ ≠ 01  for =2,3, ..., 1.n N −  For 

=1,2, ..., ,n N  we have, for 1 < < ,nn
l x l−   

  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 11

( ) ( ) ( )( )( ) ( ) ( )1 1

( )= (( ) , ( ) , )

( ( ) , ( ) , ).

n x ln n n n n nn

n n nl xn n nn

x e C C

e C C

− − −−
+ + −

− − −
− + −

Ψ Γ

+ Ψ Γ

u

u

ππππ
K

K
 (5.28) 

Now, we construct the joint stationary distribution function. Let 

( ) ( )

1

( )= ( )d .
x

n n

l
n

x x x
−
∫G ππππ  We obtain, for 1 < < nn

l x l−  and =1,2, ..., ,n N   

( )
  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 11

1
( ) ( ) ( )( )( ) ( ) ( )1 1

1

( )= d ( ) , ( ) ,

d ( ) , ( ) , .

nx y ln n n n n nn

l
n

nx n nl yn n nn

l
n

x e y C C

e y C C

− − −−
+ + −

−

− − −
− + −

−

 
 
 

Ψ Γ

+ Ψ Γ

∫

∫

G u

u

K

K
 (5.29) 

Finally, we need to normalize the coefficients in the joint density function and the joint 

distribution function. By the law of total probability, the normalization factor is given by  

                                                      
1 We note that results for the case with 0

n
µ = for some = 2, 3, ..., 1n N − are much more involved. We choose 

not to touch that case. Yet it is an interesting topic for future research. 
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( )
  

1 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 11

1=1 =1

( ) ( ) ( )( )( ) ( ) ( )1 1

1=1

d ( ) , ( ) ,

d ( ) , ( ) , .

N N nl y lnn n n n n nn
norm

l
nn n

N nl n nl ynn n nn

l
nn

c e y C C

e y C C

−
− − −−

+ + −
−

− − −
− + −

−

 
 
 

= + Ψ Γ

+ Ψ Γ

∑ ∑ ∫

∑ ∫

up e e

u e

K

K
 (5.30) 

Many quantities of interest can then be obtained. For example, the (steady state) mean 

fluid level can be obtaned as:  

( )
  

1
( ) ( )

1=1 =1

1 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 11

1=1 =1

( ) ( ) ( )( )( ) ( ) ( )1 1

1=1

[ ( )] d ( )

d ( ) , ( ) ,

d ( ) , ( ) , .

N N lnn n
n

l
nn n

N N nl y lnn n n n n nn
n

l
nn n

N nl n nl ynn n nn

l
nn

X t l x x

l ye y C C

ye y C C

−

−

−
− − −−

+ + −
−

− − −
− + −

−

 
 
 

= +

= + Ψ Γ

+ Ψ Γ

∑ ∑ ∫

∑ ∑ ∫

∑ ∫

p e G e

p e u e

u e

E

K

K

 (5.31) 

The integrals in equations (5.29)-(5.31) can be evaluated by using expressions in the 

results given in the next subsection (Lemma 9). 

5.5. Computation details, Algorithm I, and numerical examples 

First, we present a lemma that can be used for computing the distribution function, 

mean, and higher moments of the fluid flow processes. Let Lv and Rv be the left and right 

eigenvectors, corresponding to eigenvalue zero, of a matrix ,M  i.e., =0LMv and 

=0,RMv  and are normalized by =1Lv e and =1.L Rv v  It can be shown that
R LM − v v is 

invertible. Define  

 





,,

,,
.

= exp( ( ))d ; = exp( ( ))d ;

= exp( ( ))d ; = exp( ( ))d

b bMM
a ba b a a

b bM
M

a ba b a a

M x a x M b x x

x M x a x x M b x x

− −

− −

∫ ∫
∫ ∫M M

L L
 (5.32) 

Lemma 9. Assume that < < < .a b−∞ ∞  If matrix M is invertible, we have  

 



( )
 ( )

( )1
,,

( )1 1 1
,

( )1 1 1
, .

( );

( ) ;

( )

M M b aM
a ba b

M b aM
a b

M M b a
a b

M e I

M M aI bI M e

M M bI aI M e

−−

−− − −

−− − −

= = −

= − + −

= − − + +

M

M

L L

 (5.33) 

If matrix M is non-invertible, we have  
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 ( )

( )
( )

 ( )
( )

( )1
,,

2 2
( )1

,

( )2

2 2
( )1

,

( )2

( ) ( ) ;

( )
( )

2

( ) ( ) ;

( )
( )

2

( ) ( ) .

M M b aM
a b R L R La b

M b aM
R L R La b

M b a
R L R L

M M b a
a b R L R L

M b a
R L R L

M e I b a

b a
M be aI

M e I b a

b a
M ae bI

M e I b a

−−

−−

−−

−−

−−

= = − − + −

−
= − − +

− − − + −

−
= − − +

+ − − − −

v v v v

v v v v

v v v v

v v v v

v v v v

L L

M

M

 (5.34) 

Proof. First, we consider ,
M
a b

L and ,
.M

a b
M  It is easy to obtain:  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2
( )

d d = ;

d d = d ;

d ( );

( )
d .

2

b b
M x a M x a M b a

a a

b b b
M x a M x a M b a M x a

a a a

b
M x a

R L R La

b
M x a

R L R La

M e x e e I

M xe x x e be aI e x

e x b a

b a
xe x

− − −

− − − −

−

−

= −

= − −

= −

−
=

∫ ∫
∫ ∫ ∫
∫

∫

v v v v

v v v v

 (5.35) 

If M is invertible, the results are obtained directly from the first two equalities in the above 

equation. If M is non-invertible, then we use the fact that
R LM − v v is invertible. The 

results for
,

M
a b

L are obtained by routine calculations using all the equalities in the above 

equation.  

Results for 
,

M
a bL and 

,
M
a bM can be obtained similarly.  

We summarize the computational steps for the joint density function in Algorithm I. 

Algorithm I.   

1. Input Parameters: 0 1 1{ = , , ..., , = },NN
l l l l−−∞ ∞ ( ) ( ) ( ){ , , },n n nQ C C+ − ,=1,2, ...,n N and 

( ){ n
b

P+ +
, ( )n

bb
P+

, ( )n
b

P+ −
, ( )n

b
P− +

, ( )n
bb

P−
, ( )n

b
P− −

, ( )n
bb

Q , ( )n
b

Q +
, ( )}n

b
Q −

, for =1,2, ..., 1.n N −  

2. Compute   ( ) ( ) ( )( ) ( ) ( ){ , , , , , }
n n nn n nΨ ΨU UK K for ( ) ( ) ( ){ , , }n n nQ C C+ − by using equations in 

Section 4, for =1,2, ..., ;n N Compute ( )( ){ , }
nnΓ Γ by equation (5.11) for =1,2, ..., ;n N  

3. Compute  ( ) ( )( ) ( )1 11 1{ , , , }
l l l ll l l ln nn nn nn n

− −− −− −− − −−−++− ++Ψ Ψ Λ Λ for ( ) ( ) ( ){ , , },n n nQ C C+ −  ,=1,2, ...,n N  

by using equation (4.13); 

4. Construct matrices A and B (equation (5.12)). Compute ( , ) ( , ){ , }m n m n
b b

H H− +
for , =m n    

1,2, ..., 1N − by using equation (5.13); 

5. Construct pQ by using equations (5.14) and (5.15); Solve linear system =0pxQ and 

=1xe  for ( ){ , =1,2, ..., 1};n n N −p  
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6. Compute matrices ( ){ , =1,2, ...,8, =1,2, ..., }n
iM i n N by using Lemma 7 (equation (5.10)) 

and equation (5.18); 

7. Use equations (5.17), (5.21), (5.22), and (5.24) to compute ( )n
Lv and ( ) ,n

Uv  for 

=1,2, ..., ;n N ; 

8. Compute ( ) ( ){ , , =1,2, ..., }n n n N+ −w w by equation (5.26); 

9. Compute ( ) ( ){ , , =1,2, ..., }n n n N+ −u u by equation (5.27); 

10. Compute normc by using equation (5.30) and Lemma 9; 

11. Use normc to normalize ( ){ , =1,2, ..., 1}n n N −p and ( ) ( ){ , , =1,2, ..., }.n n n N+ −u u . 

12. Use the updated vectors and Lemma 9 to compute the stationary distribution function 

(equation (5.29)), density function (equation (5.28)), and the mean fluid level 

(equation (5.31)).  

We have tested Algorithm I extensively. Next, we present one example with all 

parameters. On the other hand, an MMFF process usually has many parameters. So, we 

present two more examples without parameters. 

Example 5.1 (Example 3.1 continued) A sample path of the example are shown in Figure 

1(b). Density function of the fluid level is shown in Figure 5(a). We have calculated the 

mean fluid level, which is [ ( )]= 2.7278.X tE  For this three-layer MMFF process, the 

density function changes drastically at the two Borders 1
=0l and 2

=3.l  Within each layer, 

the density function looks like the exponential function. This is not surprising given the 

matrix-exponential form of the density function in equation (5.28). 

Example 5.2 We also plot the density functions of the fluid level in Figure 5 for two more 

examples to show the variety of the density functions that can be generated by multi-layer 

MMFF processes. Figure 5(b) is for a three-layer MMFF process with 1
=0l and 2

=3l  and 

mean fluid level [ ( )]=1.8069.X tE . Figure 5(c) is for a five-layer MMFF process with 

1
=0,l

2
=5,l

3
=9,l  and 4

=14.5l and mean fluid level [ ( )]=10.4758.X tE   

 

 (a)   (b)  (c) 

Figure 5. The density functions of three multi-layer MMFF processes. 
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The set of multi-layer MMFF processes is a rich class of stochastic processes for which 

the density functions take many interesting shapes. Although the density function may look 

like the exponential function in individual layers, the shape of the entire function seems 

versatile. The algorithm works well for small/moderate size problems in terms of the 

number of states of the underlying Markov chain. For large size problems, the algorithm 

has to be modified in order to reduce the size of state space. For instance, computation of 

border probabilities
( ){ , =1,2, ..., 1}n n N −p can face the dimensionality issue since the matrix

pQ can be too big for numerical evaluation. On the other hand, the state space used in 

computation can be drastically reduced for many cases by taking advantages of special 

structures of the multi-layer MMFF processes. In the second half of this paper, we use a 

queueing example to demonstrate how Algorithm I can be applied to analyze stochastic 

systems and how the state space can be reduced to make the algorithm numerically more 

efficient. 

6. The MAP/PH/K+GI Queue 

In this section, we apply the theory on multi-layer MMFF processes to analyze a 

queueing system with customer abandonment. In Subsection 6.1, we introduce the queueing 

model explicitly. In Subsection 6.2, we introduce a Markov process associated with the age 

of the customer at the head of the waiting queue, to be called the age process. Based on the 

age process, we introduce a multi-layer MMFF process in Subsection 6.3. Subsection 6.4 

presents an algorithm for the stationary distribution of the age process. In Subsection 6.5, 

computational procedures are developed for a number of queueing quantities. Numerical 

examples are presented in Subsection 6.6. 

6.1. Definitions of the MAP/PH/K+GI queue 

We consider a multi-server queueing model with customer abandonment. Upon arrival, 

all customers join a single queue and are served on a first-come-first-in basis. There are K 

identical servers. When the waiting time of a customer reaches (random) time ,τ  the 

customer leaves the system without service.   

(i) Customers arrive to the queueing system according to a continuous time Markovian 

arrival process (MAP) 0 1
( , )D D , where 0

D and 1
D are square matrices of order .am  

Intuitively, 0
D contains the transition rates without an arrival and 1

D contains the 

transition rates with one arrival. The underlying Markov chain of the arrival process 

{ ( ), 0}aI t t ≥  has an irreducible infinitesimal generator 0 1= .D D D+  The stationary 

distribution aθθθθ of the underlying Markov chain satisfies =0aDθθθθ and =1.aeθθθθ  The 

(average) customer arrival rate is given by 1 .= aDλ eθθθθ  See He [28] and Neuts [38] for 

more details on MAPs. 

(ii) All customers join a single queue waiting for service and are served on a first-come-

first-in basis. If a customer’s waiting time reaches random time ,τ  the customer leaves 
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the system immediately without service. The abandonment time τ has a discrete 

distribution: { = }= ,n nP lτ η  for ,=1,2, ...,n N  where 1 2 1
=0< <...< < = .NN

l l l l− ∞  

(iii) There are K identical servers. When a server becomes available, the customer at the 

head of the queue (if there is any) enters the server for service. If an arriving customer 

finds an idle server, the customer enters the server for service upon arrival. 

(iv) The service time of each customer has a phase-type distribution with PH-representation 

( , )Tββββ  of order .sm  We assume that 1=eββββ , i.e., the service time of a customer is 

always positive. The mean service time is given by 1T− e−β−β−β−β .  Let 1=1/( )s Tµ −− eββββ , 

which is the service rate. See Neuts [39] for more about phase-type distributions. 

(v) Define = / ( ).sKρ λ µ  We assume <1Nη ρ to ensure the stability of the queueing 

system. Since Nη λ is the number of customers who arrive per unit time, who will not 

leave the system until service is done, and sKµ is the number of customer that can be 

served per unit time, <1Nη ρ ensures that all customers are either served or abandon 

the system in finite time. Consequently, the system is stable. If =0,Nη  the system is 

automatically stable.  

6.2. The Age Process 

To obtain performance measures for the queueing model, we utilize a Markov process 

associated with the age of the customer at the head of the queue. The age of a customer is 

defined as the time elapsed since the customer enters the system. Since customers arrive 

according to an MAP and service times are of phase-type, tracking the age of the customer 

at the head of the queue, state of the arrival process, and states of the service processes of 

individual servers, provides enough information to describe the dynamics of the queueing 

system. Define 

• ( ):a t  the age of the customer waiting at the head of the queue at time t, if the (waiting) 

queue is not empty; otherwise, ( )=0a t (See the top figure in Figure 6). If 

1
< ( )<n n

l a t l + , for =1,2, ..., 1n N − , ( )a t increases linearly at rate one if there is no 

service completion; Otherwise (i.e., there is service completion), ( 0) =a t +

max{0, ( ) }a t u− , where u is the sum of the interarrival times between the customer at 

the head of the queue and the customer just behind it in the queue. If ( ) = ,na t l  for 

= 2,3, ..., 1n N − , ( )a t continues to increase linearly at rate one with probability

1 /( ... );n n Nη η η− + +  Otherwise, ( 0) = max{0, },na t l u+ −  where u is the interarrival 

time between the departing customer (since its waiting time reaches nl ) and the 

customer just behind it in the queue. The interarrival time u is the sum of interarrival 

times between those two consecutive customers at the head of the queue and all lost 

customers, if they exist, between them. By this definition, if ( )=0,a t there is no 

customer waiting for service. 
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• 
( )

( ):
a

I t  If ( ) > 0,a t
( )

( )
a

I t is the state of the customer arrival process right after the 

arrival of the customer at the head of the queue; and if ( )=0,a t the state of the arrival  

process at time t (i.e., 
( )

( ) = ( ).aa
I t I t ) By this definition,

( )
( )

a
I t is piece-wise 

constant and its value changes only when ( )a t drops down. 

• ( ):in t  the number of servers whose service state is i at time t, for .=1,2, ...,
S

i m   

It turns out that 
1( )

{( ( ), ( ), ( ), , ( )), 0},ma s
a t I t n t n t t ≥…  is a continuous time Markov 

chain whose infinitesimal generator can be constructed as in He et al. [30] by using the 

CSFP approach (See He and Alfa [29]). Based on the total number of working servers, the 

state space of
1

( ( ), , ( ))ms
n t n t… can be organized as (0) (1) ( ),KΩ Ω Ω∪ ∪…∪  where, for 

=0,1, ..., ,k K   

 
1

=1

.( )= =( , ..., ): 0, integer, =1, ..., , =
ms

m si i is
i

k n n n n i m n k
  
 
  

Ω ≥ ∑n  (6.1) 

The set ( )kΩ consists of all states such that there are exactly k customers in service (or k 

working servers), for = 0,1, ..., .k K The number of states in ( )kΩ is given by 

( 1)!/( !( 1)!)s sk m k m+ − − . Then the state space of the Markov process can be written as  

 { } { }{ } { }{ }=0
.0 1, ..., { ( )} (0, ) 1, ..., ( )K

a ak
m k m K× × Ω ∞ × ×Ω∪ ∪  (6.2) 

Remark. Instead of using 
1

{ ( ), ..., ( )}ms
n t n t , a more straightforward and simple way to 

model the service process is to keep track of the service process for each server (called TPFS 

in the literature) (See He et al. [30] or He and Alfa [29]). However, the number of states 

required by that approach to track the service status of the K servers (i.e., the CSFP method) 

is ( ),K
sO m  which is significantly greater than 1

1
s

s

K mO
m

  
     

+ −
−

, the number of states 

required by the approach used in this paper. 

If ( ) > 0,a t  the state of the customer arrival process is frozen (i.e., constant) except for 

down-jump epochs. On the other hand, the states of the service processes are changing 

according to rate matrices ( , )sQ K m for no service completion and 

( , ) ( 1, )s sQ K m P K m− + − for service completion. If ( ) = 0,a t  the arrival state and service 

states are all changing according to rate matrix  

0,0 0,1

1,0 1,1 1,2
(1)

1, 2 1, 1 1,

, 1 0 1 1

.=

( ) ( , )

bb

K K K K K K

sK K

A A
A A A

Q
A A A

A D D I I Q K mη
− − − − −

−

 
 
 
 
 
  
 + ⊗ + ⊗

⋱ ⋱ ⋱  (6.3) 
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Construction of matrices ( , ),sQ K m ,( , )sQ K m− ( 1, ),sP K m+ − (1) ,
bb

Q  and the blocks within

(1)
bb

Q is complicated. An algorithm has been given in He and Alfa [29] for that purpose. 

Details are omitted. 

Special cases of the age process have been analyzed by using an analytic method 

introduced in Choi et al. [18] (Also see Kim and Kim [33] and He et al. [30]). However, 

that approach seems not suitable for the analysis of the multi-server queue with MAP 

arrivals due to a matrix commutability issue. In this paper, based on the age process, we 

introduce a multi-layer MMFF process to solve the problem. 

6.3. A multi-layer MMFF process 

Now, based on the age process, we define a multi-layer MMFF process 

{( ( ), ( )), 0}X t t tφ ≥ . The idea is conventional and is to change the down jumps of the age 

process into periods of decreasing fluid, keep the increasing periods of the age process for 

the periods of increasing fluid, and keep the periods with ( ) = 0a t for the periods with zero 

fluid (See the two figures in Figure 6). More specifically, we have  

 

    Figure 6. A sample path of the age process (top) and its corresponding MMFF  

process (bottom). 

1. There are N layers with Borders ,nl  for =1,2, ..., .n N  Layer 1 is empty (i.e., 
(1) =∅S ). 

2. For Layer 2,n≥  the state space for ( )tφ is:  

{ } { } ( )
0

( ) ( ) .( ) ( )={ } 1, ..., , ={ } 1, ..., , and =n n n
a aK Km m+ −Ω Ω ∅+ × × − × ×S S S  (6.4) 

  The Q -matrix ( )nQ of the underlying Markov chain is:  

 

( )

( )

( )
1 1 1 1 0

.

( , ) ( , ) ( 1, )
=

( ... ) ( ... )

n
s s s

n

n
n N n

I Q K m I Q K m P K m
Q

D I D I D Iη η η η

− +
+

−−

 
 
 
 
 

⊗ ⊗ −

+ + ⊗ + + ⊗ + ⊗

S

S
 (6.5) 
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(a): The Age Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t

0

0.02

0.04

0.06

0.08

0.1

X
(t

)

(b): The Corresponding MMFF Process
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  The fluid flow rates are all 1 or −1, i.e., ( ) ( )= = .n nC C I+ −  

3. Within Border 1
l (i.e., 1

=0l ), the transition rates of the underlying Markov chain are 

given by equation (6.3) for (1)
bb

Q and  

 (1) (1)

2 1

.

0
= ; = 0

( ... )
b b

N

Q Q
D Iη η

+ −

 
 
 
 
 + + ⊗

 (6.6) 

4. The transition probabilities entering Border 1
l are given by (Remark: There is no Layer 

1.)  

 (1) (1) (1)
.= 0; = 0; = (0, ...,0, )

b b bb
P P P I− + − − −  (6.7) 

When entering from Layer 2 to Border 1
,l  the underlying process ( )tφ enters the set 

{ } { } ( ).0 1, ..., a Km ×Ω×  

5. All other borders ( >1n ) have no state. The probabilities of approaching Border ,nl  for 

2 1,n N≤ ≤ −  from below are given by  

 ( ) ( ) ( )1

1

.
...

= ; = ; = 0
... ...

n n nNn n
b b bb

n nN Nn

P I P I P
η ηη

η η η η η
+

+ − + + +
+

+ +

+ + + + +
 (6.8) 

 The probabilities of approaching Border nl , for 2 1n N≤ ≤ − , from above are given by  

 ( ) ( ) ( )= ; = 0; = 0.n n n
b b bb

P I P P− − − + −  (6.9) 

The joint stationary distribution of the multi-layer MMFF process can be obtained by 

using Algorithm I. 

6.4. Joint stationary distribution of the age process and Algorithm II 

We would like to point out that, if ( )
=2( ) ,nN

ntφ +∈∪ S  the service process evolves and 

the state of the arrival process is frozen in the multi-layer MMFF process, and, if 
( )

=2( ) ,nN
ntφ −∈∪ S  the states of the service processes are frozen and the arrival process evolves. 

With a brief reflection of the definitions of the age process and the multi-layer MMFF 

process, it is easy to see that the age process can be obtained by censoring out states in 
( )

=2 .nN
n −∪ S  Computations can be done using Algorithm I. However, the state space required 

for Algorithm I can be too large, unnecessarily, if K is big. Using certain special structure 

of the multi-layer MMFF process, we can modify Algorithm I and reduce the required state 

space for its implementation.   

(i) Border Probabilities: Since all borders, except Border 1
,l  are empty, we have 

( ) =0,np  for = 2,3, ..., 1.n N −  Therefore, we only have to compute (1),p  which 

satisfies (1) (1) = 0,pp Q  where  
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(1) (1) (1) (1) (1)
above

= ,
bb b bb

Q Q P+ −+p PQ  (6.10) 

where (1)
above

P contains the first passage probabilities from the set above Border 1
l (up) to 

return to Border 1
l (from above), which can be computed recursively as follows. We 

define ( )
above

nP the state transition probabilities that the process goes up leaving Border nl  

and returns to Border nl (from above) for the first time (i.e., starting in ( 1)n+
+S and ending 

in ( 1)n+
−S ). We also define ( )

above
nP the state transition probabilities that the process goes 

up towards Border nl and goes below Border nl from above or reflecting on Border nl

for the first time (i.e., starting in ( )n
+S and ending in ( )n

−S ). Immediately, we have 
( 1) ( )

above
= ,N N− ΨP  and for = 2,3, ..., 1,n N −   

( )
 

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

below above above

1
( ) ( , )( ) ( )( 1) ( ) ( )1 11 1

above below below
.

,n n n n n n n
b b b b

l l n l ll l l l n nn n nn nn nn n

P P I P P

I

−

+ − + + − + − −

−
− −− −− − −− − −−−++− ++

 
 
 

= + −

= Ψ +Λ −Ψ Λ

P P P

P P P
 (6.11) 

(ii) Vector (1)p : Due to the special structure of (1)
b

Q + and (1) ,
bb

P−  we obtain  

 



0,0 0,1

1,0 1,1 1,2
(1)

1, 2 1, 1 1,

,, 1

= ,
K K K K K K

K KK K

A A
A A A

A A A

A A
− − − − −

−

 
 
 
 
 
  
 

p ⋱ ⋱ ⋱Q  (6.12) 

where 
,

(1)
0 1 1 2 1 above

= ( ) ( , ) (( ... ) )K K s NA D D I I Q K m D Iη η η+ ⊗ + ⊗ + + + ⊗ P . We can explore the 

quasi birth-and-death (QBD) structure in (1)
pQ to reduce the state space required for 

computing (1)p as follows. Define  

 

1
1 1,0 0,0

1
, 1 1, 1 1 2, 1

;

( ) ;

( ) , for = 2,3, ...,
k k k k k k k k

B A A

B A A B A k K

−

−
− − − − − −

= −

= − −
 (6.13) 

Define (1) (1)
, 0 1 1 2 1 1,above

= ( ) ( , ) (( ... ) ) .sK N K K K
D D I I Q K m D I B Aη η η −+ ⊗ + ⊗ + + + ⊗ +p PQ We also 

divide (1)p according to the number of busy servers into (1) (1) (1)
0 1

( , , ..., ).Kp p p  Then (1)
Kp  

satisfies (1) (1)
, = 0,K Kpp Q  and (1) (1)

1
= ,

k k k
B−p p  for = , 1, ...,1.k K K −  In the computation, we 

set (1) =1Kp e and normalize the vectors later.  

Denote by 1
( )

K
x+p the joint stationary density function of the age process. Let 

( )
1 1
( ) = ( ),n

K K
x x+ +p p  if 1

< < .nn
l x l−  By Theorem 2 and censoring out ( )

=2 ,nN
n −∪ S  we obtain  

Theorem 3. We assume that <1Nη ρ and ( ... ) 1n Nη η ρ+ + ≠ for = 2,3, ..., 1.n N −  Then the 

steady state distribution of the age process exists and its density function is given by  
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(1)

=0

( )( ) ( )( ) ( )( ) ( ) ( )1
1 1 .

{ ( )= 0} ;

( ) , for < , = 2,...,

K

k
k

nn nx l l xn n nn n
nK n

P a t

x e e l x l n N
− −−

+ −+ −

=

= + Ψ ≤

∑p e

p u u
K K

 (6.14) 

The normalization factor is (Remark: ( ) =0N
−u )  

 
( )( ) ( )( ) ( )(1) ( ) ( )1

1=2=0

.ˆ = d
K N nnl ny l l yn n nn n

norm k l
nnk

c e e e y
− −−

+ −
−

 
  
 

+ + Ψ∑ ∑∫p e u u
K K  (6.15) 

Proof. For the existence of the stationary of the age process, we need to show that <1Nη ρ  

if and only if <0.Nµ  To do so, we find θθθθ satisfying ( ) =0nQθθθθ and =1.eθθθθ  We divide 

θθθθ into ( , )+ −θ θθ θθ θθ θ according to ( )n
+S and ( ).n

−S  By routine calculations, we obtain 

1=:( ... )( ) / ( )n a sN Dη η+ + −+ + ⊗ +e eɶθ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ and =: ( ( , ) ( 1, )) / ( ),a s s sQ K m P K m− +
− + −⊗ − +e eɶθ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ

where s
ɶθθθθ satisfies ( ( , ) ( , ) ( 1, ))=0s s s sQ K m Q K m P K m− ++ −ɶθθθθ and =1.s eɶθθθθ It has been 

shown in He et al. [30] that ( , ) ( 1, ) =s s s sQ K m P K m Kµ− + − eɶθθθθ (i.e., the total service rate). 

Consequently, we obtain = =(( ... ) )/ ( ),n n sN Kµ η η λ µ+ − + −− + + − +e e e eθ θ θ θθ θ θ θθ θ θ θθ θ θ θ  which leads 

to the condition of the existence of the stationary distribution. Also, the relationship shows 

that ( ... ) =0n sN Kη η λ µ+ + − if and only if = 0.nµ  Thus, all assumptions in Theorem 2 are 

satisfied. The closed form solution of the density function of the age process is obtained 

from that of the multi-layer MMFF process by censoring.  

Again, evaluations of integrals in the above equation can be done by applying Lemma 

9. Next, we modify Algorithm I to compute the joint stationary distribution of the age 

process. 

Algorithm II   

1. Input Parameters: ,K ,N 1 2
{ =0, ,..., = },Nl l l ∞

1 2
{ , , ..., },Nη η η

0 1
{ , , },am D D  and ( , );Tββββ  

2. Construct (1){ ( , ), ( , ), ( 1, ), }s s s bb
Q K m Q K m P K m Q− + − by applying the algorithm in He 

and Alfa [29];  

3. Construct transition blocks for the multi-layer MMFF process: 
0 1 1

{ = , , ..., ,
N

l l l
−

−∞  

= },
N

l ∞ ( ) ( ) ( )
,{ , , , =1,2,..., }n n nQ C C n N+ −  and ( ){ n

b
P+ +

, ( )n
bb

P+
, ( )n

b
P+ −

, ( )n
b

P− +
, ( )n

bb
P−

, ( )n
b

P− −
, 

( )n
bb

Q , ( )n
b

Q +
, ( )n

b
Q −

, =1,2, ..., 1}n N − , according to Subsection 6.3; 

4. Similar to Steps 2 and 3 in Algorithm I, compute   ( ) ( ) ( )
( ) ( ) ( ){ , , , , , }

n n n
n n nΨ ΨU UK K  for

( ) ( ){ , };n nQ C  Compute  ( ) ( )( ) ( )1 11 1{ , , , }
l l l ll l l ln nn nn nn n

− −− −− −− − −−−++− ++Ψ Ψ Λ Λ for ( ) ( ) ( ){ , , }n n nQ C C+ − , 

for =1,2, ..., 1;n N − ; 

5. Compute (1)

above
P using equation (6.11); Construct (1)

,KpQ using (6.13); and solve 

(1) (1)
, = 0K Kpp Q  and 

(1) =1,Kp e , and Compute (1)p ; 
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6. Compute ( ){ , =1,2, ...,8, =1,2, ..., },n
iM i n N ( ) ( ){ , , =1,2, ..., };n n n N+ −w w  and ( ) ( ){ , ,n n

+ −u u  

=1,2, ..., }n N  by using Algorithm I; 

7. Compute ˆnormc by using equation (6.15), and use ˆnormc to normalize (1){ ,
k

p  

= 0,1, ..., }n K  and ( ) ( ){ , , =1,2, ..., }n n n N+ −u u ; 

8. Use the updated vectors and equation (6.14) to compute the density function of the age 

process.  

We would like to point out that the above computation process can be simplified further. 

For example, there is no need to do Step 3. In all subsequent computations, matrices 

constructed in Step 2 can be used directly. The set ( )
0

nS is empty. Thus, there is no need to 

consider them in computations. Since ( )nC+ and ( )nC− are identity matrices, there is no need 

to construct and use them in computation. 

Two particular issues related to the implementation of Algorithm II are worth 

mentioning. The first issue is to determine the left and right eigenvectors, corresponding to 

eigenvalue zero, of
( )nK and ( )

.
nK  The second one is about solving the Sylvester 

equation = .AX XB C+  It is recommended to use Schur decomposition in combination 

with back-substitution, instead of Kronecker product. 

6.5. Queueing quantities 

Based on the joint stationary distribution of the age process, we find three sets of 

queueing quantities: (i) Customer abandonment/loss probabilities; (ii) Waiting times; and 

(iii) Queue lengths. We assume that conditions stated in Theorem 3 hold throughout this 

section. 

Proposition 1. The probability that a customer will eventually receive service is given by  

 
( )1 ( )( )(1) ( ) ( )

,1 , 11
=0 =2

,
1 1

= ( ) ( ( , ) ( 1, ))
nK N nnn n

l l s sS k l l nnnn
k n

p D I I Q K m P K m
λ λ

−
− +

+ − −−

 
  
 

⊗ + + Ψ ⊗ −∑ ∑p e u u e
KKL L  (6.16) 

where
( )

,
1

n

l lnn−

KL and 
( )

,
1

n

l lnn−

KL are defined in Lemma 9. Then the customer abandonment 

probability is =1 .L S
p p−  We decompose Lp into two parts: (i) loss probability ,1L

p of 

customers at the head of the waiting queue (including those customers who see no waiting 

queue and no available servers, and abandon the system); and ii) loss probability ,>1L
p of 

customers before reaching the head of the waiting queue. Then we obtain ,>1 ,1
= ,LL L

p p p−  

and  


(1) 1 ( ) ( )( )( ) ( )1 1 1

,1
=2

=

(( ) ) 1
= .

N n nl ln nnk nn
L N

n
m

m n

D I
p e

η η
λ λ

η

−
− −

+ −

 
+   

 

⊗
+ Ψ∑

∑
p e

u e u e
K

 (6.17) 
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Proof. By definitions, we have  

1
(1)

1 10
=0

.
1

= ( ) ( )( ( , ) ( 1, )) d
K

s sS Kk
k

p D I x I Q K m P K m x
λ

− ∞
− +

+

 
  
 

⊗ + ⊗ −∑ ∫p e p e  (6.18) 

We note that the numerator in equation (6.18) is the sum of transition rates that a customer 

enters a server for service, and the denominator in equation (6.18) is the arrival rate. Then 

the ratio is the percentage of customers who receive service, which is also the probability 

that a customer will eventually receive service. The desired expression is obtained by 

combining equation (6.18) and Lemma 9. 

The probability for a customer who sees no waiting queue and no server available, and 

abandons the queue is (1)
1 1 .(( ) )

k
D Iη λ⊗p e /  For a customer at the head of the queue to 

abandon the queue, its age must reach nl for some =2,3,..., 1.n N−  If its age reaches ,nl  

its age must be greater than 1
,

n
l −  which occurs with probability ... .n Nη η+ +  Then the 

probability that it abandons the queue is / ( ... ).n n Nη η η+ +  Combining with the transition 

rate for the age to reach ,nl  which is 1
( ) ,nK
l+p e  we obtain  

 
(1) 1

1 1
,1 1

=2

=

(( ) ) 1
= ( ) ,

N
k n

nL K N
n

m
m n

D I
p l

η η
λ λ

η

−

++
⊗ ∑

∑
p e

p e  (6.19) 

which leads to the desired result.  

Proposition 2. The distribution of waiting time S
W of customers who receive service is  

 

 

1
(1)

1
=0

( )( ) ( )( ) ( )( ) ( )1

1 .

1
{ = 0} ( ) ;

{ < } 1
( ( , ) ( 1, )) ,

for < , = 2,3, ...,

K

S k
kS

nn nx l l xn nS n n
s s

S

nn

P W D I
p

dP W x
e e I Q K m P K m

d x p

l x l n N

λ

λ

−

− − − +−
+ −

−

 
  
 

= ⊗

= + Ψ ⊗ −

≤

∑p e

u u e
K K  (6.20) 

The distribution of abandonment time ,1L
W of customers lost at the head of the waiting 

queue is given by  

 

(1)
1 1

,1

( ),1
1

,1

.

( )
, for =1;

{ = } ( )
, for =2,3, ..., 1

...

k

L

nnL
nn K

n N L

D I
n

p

P W l l
n N

p

η
λ

η
η η λ

+






=  
   

⊗

−
+ +

ep

p e
 (6.21) 

The abandonment time ,>1L
W of a customer that abandons the queue before reaching the 

head of the queue, we have, for =1,2, ..., 1,k N −   
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( )

( )( ) ( ) ( )
,,>1 1, 11= 1 ,>1

.{ = }= ( )
nN nn n n k

l lL k l l nnnn
n k L

P W l D I
p

η

λ+ − −−+

  
  
  

  

Ψ + ⊗∑ u u e
KKL L  (6.22) 

Proof. First, we note that =0
S

W occurs if a server is available when a customer arrives, 

which leads to the expression for { =0}.
S

P W  Similar to the proof of Proposition 1, we use 

the transition rate ratio to derive  

 
1

,
d { < } 1

= ( )( ( , ) ( 1, )) , for > 0
d

S
s sK

S

P W x
x I Q K m P K m x

x p λ
− +

+ ⊗ −p e  (6.23) 

which leads to the desired result. 

Second, we note that ,1 = nL
W l if ( )a t reaches nl from below and an abandonment 

occurs for = 2,3, ..., 1.n N −  The probability for ,1L
W to reach nl is ( )

1 ,1( ) / ( ).n
nK L

l p λ+p e  The 

probability for the abandonment to occur is / ( ... ).n n Nη η η+ +  For n = 1 (i.e., for Border 1l

= 0), the conditional probability for a customer who sees no waiting queue and no server 

available, and abandons the queue is (1)
1 1 ,1 .(( ) ) ( )K L
D I pη λ⊗p e /  Then expression (6.21) can 

be obtained easily. 

We use the joint stationary distribution of the multi-layer MMFF process to find the 

distribution of ,>1L
W . When the multi-layer MMFF process is in ( )n

−S and there is an arrival, 

the arriving customer will abandon the queue in the future with probability 2 1
...

n
η η −+ + if 

1
.< < nn

l x l−  Since customer arrivals take place only when the fluid level of the MMFF 

process is decreasing, we censor out the periods of time in which the fluid level is increasing. 

Using the censored process, we obtain, for =1,2, ..., 1,k N −   

 
1

1 ( 1)
,>1 1

=
,>1

{ = }= ( )d ( ) ,
ˆ̂

N l
n nnorm

L k klnn knorm L

c
P W l x x D I

c p
η

λ

−
+ +

−

 
  
 

⊗∑∫ eππππ  (6.24) 

where  

 
( )( ) ( ) ( )(1) ( ) ( ) ( )1

1=2=0

.ˆ̂ = d
K N nnl y ln l yn n nn n

norm k l
nnk

c e e y
− −−

+ −
−

 
  
 

+ Ψ +∑ ∑∫p e u u e
K K  (6.25) 

(Remark: Vectors ( )n
+u and ( )n

−u in equation (6.25) are not normalized.) In the multi-layer 

MMFF process, the fluid level increases and decreases both at rate 1. If the process is 

ergodic, probabilities that the process is increasing or decreasing at an arbitrary time are 

equal. Thus, we must have ˆˆ ˆ=norm normc c , which leads to the desired result in equation (6.22).  

According to the law of total probability, we must have { < }=1
S

P W ∞ and 
1

,1=1
{ = }=1,

N

nLn
P W l

−∑  which can be used to check computation accuracy. The law of total 

probability
1

,>1=1
{ = }=1

N

nLn
P W l

−∑ can also be used to check computation accuracy. The mean 
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waiting time [ ]
S

WE can be calculated by:  


 

( )
( )( )( ) ( )

,, 11=2

,
1

[ ]= ( ( , ) ( 1, ))
nN nnn n

l l s snS l l nnnnS

W I Q K m P K m
p λ

− +
+ − −−

 
 
 
 

+ Ψ ⊗ −∑ u u eE KKM M  (6.26) 

where
( )

,1

n

l lnn−

KM and 
( )

,
1

n

l lnn−

K
M are defined in Lemma 9. The distribution of the waiting time W

of an arbitrary customer can be found from that of ,
S

W  ,1,L
W  and ,>1.L

W  The mean 

waiting time can be found by  

,1 ,1 ,>1 ,>1 .[ ]= [ ] [ ] [ ]
S S L L L L

W p W p W p W+ +E E E E  (6.27) 

Let ( )
S

q t be the number of customers in service (or busy servers) and ( )Wq t the 

waiting queue length at an arbitrary time .t  The distribution of ( )
S

q t can be found directly 

from the border probability vector (1).p  The z-transform of ( )Wq t can be derived based on 

the joint distribution of the age process. If the ( ) =a t x at an arbitrary time ,t  the waiting 

queue length consists of the customer at the head of the queue and all customers arrived 

after that customer (i.e., in the period ( , )t x t− ) who have not abandoned the queue yet. To 

identify who are still waiting in queue and who have abandoned the queue, we divide the 

interval ( , )t x t− into 2
( , ),t l t−

3 2
( , ),t l t l− −  ..., 1

( , ),
n

t x t l −− −  if 1
< < .nn

l x l− Customers 

who arrived in 2
( , )t l t− are still in the system at time t with probability 1

.1 η− The 

conditional probability generating function of the number of such customers is 

0 1 1 1 2
exp{( ( (1 ) ) ) }.D z D lη η+ + −  (see He [28]). For customers arrived in 3 2

( , ),t l t l− −  they 

abandon the queue before t with probability
1 2

η η+ and are still in the queue at time t

with probability 1 2
.1 η η−− The conditional probability generating function is 

0 1 2 1 2 1 3 2
exp{( ( (1 ) ) )( )}.D z D l lη η η η+ − −+ + − In general, for customers arrived in 

1
( , ),m m
t l t l −− −  they abandon the queue before t with probability ˆ1 mη− and are still in the 

queue at time t with probability ˆ ,mη where 1
.ˆ = ...m m Nm

η η η η++ + +  The conditional 

probability generating function is given by 0 1 1
ˆ ˆexp{( (1 ) )( )}.m m m m

D z D l lη η −+ − + −  Denote 

by *
0 1

( , , )=exp{( (1 ) ) } .P z x D z D x Iη η η+ − + ⊗  Conditioning on ( )a t at an arbitrary time ,t

the probability generating function of ( )Wq t can be found as follows. 

Lemma 10.  

2
( ) (1) ( ) * *

1 1
1=2 = 1

,ˆ ˆ[ ]= ( ) ( , , ) ( , , )d
N lq t n nW

n m mK nl
nn m n

z z x P z x l P z b xη η+ −
− −

+ −∑ ∏∫p e p eE  (6.28) 

(Remark: 1
,=m m m

b l l −−  for = 2,3, ..., .m N )  

By Theorem 2.3.2 in He [28], we have  
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1
1
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.
( , , )

= ( )( )Dx
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P z x
x e I D D I
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ηλ η−∂

+ − − ⊗
∂

e
e e eθθθθ  (6.29) 

Recall that 1
= aDλ eθθθθ and 0 1

= .D D D+  Consequently, we obtain  

Proposition 3. The distribution of ( )
S

q t is given by  

(1)

1
(1)
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if = 0,1, ..., 1;,

( ) =

1 , if = .

{ }=

k

S K

k
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 (6.30) 

The mean waiting queue length is given by  
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 (6.31) 

To calculate the mean queue length, we need to evaluate the integral, for 

2 < ,m n N≤ ≤   
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1

.d
nnl nx l D x ll xn n nn n n
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e e e I x
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Define, for <a b and matrix ,M  

( )   ( )
( )( , )( , ) ( ) ( ) ( ) ( )

,,
.= ; and = d

b b nM DM D M x a D x a M b x D x a
a ba b a a

e e I d x e e I x− − − −⊗ Ψ ⊗∫ ∫L L  (6.33) 

Lemma 11. If matrix M is invertible, ( , )
,
M D

a b
L and ( , )

,

M D

a bL satisfy the following Sylvester 

equations, respectively,  

( )
    ( )

( , ) ( , ) ( ) ( )
, ,

( ) ( )( , ) ( , ) ( ) ( )
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M D I e e I I

M D I e e I
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− ⊗ Ψ − Ψ ⊗

L L

L L
 (6.34) 

If M is non-invertible, let Lv and Rv the left and right eigenvectors of ,M satisfying 

=1L Rv v  and =1.Lv e  Then ( , )
,
M D

a b
L and ( , )

,

M D

a bL satisfy the following Sylvester equations, 

respectively,  

     
( )

    ( ) 

( , ) ( , ) ( ) ( )
1, ,

( ) ( ) ( )( , ) ( , ) ( ) ( )
, , 1

( ) ( ) = ;

( ) ( ) = ,

M D M D M b a D b a
R L R La b a b

n n nM D M D M b a D b a
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M D I e e I I L
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 (6.35) 
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where ( )( ) ( ) 1
1

= d = ( ( ) )( ) .
b

D x a D b a
a a

a
L e x I e I b a D I− − − 

 
 

⊗ − − − − ⊗∫ e eθ θθ θθ θθ θ   

Proof. The lemma can be proved similar to that of Lemma 9. Details are omitted.  

Remark. It is well-known that a Sylvester equation of the type =AX XB C+ has a unique 

solution if matrices A and B have no common eigenvalues. That is why we present the 

second part of Lemma 11. The existence of a solution is still not guaranteed, though. 

Combining Proposition 3 and Lemma 11, we obtain  
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Note that Lemma 9 is used in the above expression. 

Let ( )totq t be the total number of customers in the queueing system at an arbitrary time 

.t  Then the probability generating function and the mean of ( )totq t can be found as  

 

( )( ) (1)

=0

(1) (1)

=0

.

[ ] [ ];

[ ( )] (1 ) [ ( )]

K
q tq t k Ktot W

k
k

K

tot Wk
k

z z z z

q t k K q t

= +

= + − +

∑

∑

p e

p e p e

E E

E E
 (6.37) 

The queueing quantities are connected to each other by the well-known Little’s law:   

• [ ( )]= [ ]Wq t WλE E  for the number of waiting customers and the actual waiting times 

of customers;  

• 1[ ( )]= ( )
S S

q t p Tλ −− eE ββββ  for the number of customers in service and service times; 

and  

• 1[ ( )]= [ ] ( )tot S
q t W p Tλ λ −+ − eE E ββββ  for the total number of customers in the queueing 

system and the sojourn times of customers.  

The relationships provide insight on the quantities and queueing system of interest, and can 

be used for checking computation accuracy. 

6.6. Numerical examples 

In this subsection, we present five examples to gain insight on the abandonment 

probabilities, waiting times, and queue lengths. We also use the examples to discuss the 

dimensionality issues of our algorithm. We apply our algorithm to queueing models 
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investigated in Dai and He [21] and Whitt [44]. 

Example 6.1. We consider an MAP/PH/K+GI queue with =50,K = 7,N 51 2 3 4
( , , , ,l l l l l , 

76
, )=(0,1,2,3,4,6, )l l ∞ , = (0,0.1,0.2,0.1,0.2,0.2,0.2)ηηηη ,  

 0 1 .
66 16 20 30 2.0 1.0= , = ; = (0.4,0.6), =

10 88 20 58 0.6 1.0
D D T

     
     
     
− −

− −ββββ  (6.38) 

Table 2 shows basic quantities for the arrival process, the service time distribution, and 

the abandonment time distribution for those customers that are not infinitely patient, that is, 

for | < .τ τ ∞  We see that = / ( ) = 2.257,Kρ λ µ  indicating that the system receives more 

than double the traffic volume that it can serve, and therefore we expect that a large 

proportion of customers will abandon the queue. The abandonment time distribution for the 

80%  of customers who are not infinitely patient is bimodal, which illustrates the flexibility 

of our approach 

Table 2. Basic Quantities of the Input Parameters for Example 6.1. 

 MAP PH-Dist. | <τ τ ∞  

Rate λ = 66.9474 µ =0.5932 
1

= 0.2857
[ | < ]τ τ ∞E  

Mean 0.0154 1.6857 3.5 

SCV 1.0475 1.0396 0.245 

Applying Algorithm II, a number of queueing quantities can be obtained. First, we plot 

the stationary density functions of the age of the customer at the head of the queue and the 

waiting time of an arbitrary served customer in Figure 7. It seems that most of the customers 

have to wait in the queue for service, yet the mean waiting times are mostly less than 6
=6.l  

Thus, the densities are concentrated around 5 =4.l  Second, we present the (conditional) 

distributions of the waiting times of customers abandoned the queue in Table 3. While the 

possibility of customers abandoning the queue varies significantly before they reach the 

head of the queue, most of them abandon the queue at 3
=2l (if they do abandon the queue). 

If a customer reaches the head of the waiting queue, it has a big chance to enter service 

before their waiting time (or age) reaches 6
=6.l  Lastly, we summarize other queueing 

quantities in Table 4. 

Table 3. Conditional distributions of waiting times of customers abandoned the queue  

for Example 6.1. 

 
1
l  2

l  3
l  4

l  5l  6
l  7l  

,1{ = }nL
P W l  0 0.0 0.0 0.0 0.9962 0.0038 0.0 

,>1{ = }nL
P W l  0 0.1845 0.3690 0.1845 0.2619 0.0001 0.0 

{ = }nLP W l  0 0.1795 0.3591 0.1795 0.2816 0.0002 0.0 
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  Table 4. Summary of queueing quantities for Example 6.1. 

[ ( )]a tE  S
p  Lp  

,1L
p  ,>1L

p  ,0q
p  [ ]

S
WE  

4.2200 0.4431 0.5569 0.0149 0.5419 0.0 4.2195 

,1[ ]
L

WE  ,>1[ ]
L

WE  [ ]LWE  [ ]WE  [ ]
S

qE  [ ]WqE  [ ]totqE  

4.008 2.524 2.564 3.297 50.00 220.76 270.76 

 

 

Figure 7. The stationary density functions of ( )a t and S
W for Example 6.1. 

Example 6.2. (Example 6.1 continued) We extend Example 6.1 by varying the number of 

servers from = 23K (corresponding to = 4.514)ρ to =150K (corresponding to 

= 0.7524ρ ), and compute queueing quantities for those queueing systems. The results are 

divided into three groups ,1 ,>1{ , , },L L L
p p p ,1 ,>1{ [ ], [ ], [ ], [ ]},

S L L
W W W WE E E E and 

{ [ ], [ ], [ ]}totWS
q q qE E E . The results are plotted in Figure 8.  

(a) Abandonment Probabilities (b) Mean Waiting Times (c) Mean Queue Length 

Figure 8. Summary of queueing quantities for Example 6.2. 

From Figure 8, it is interesting to see that (i) The abandonment probability ,1L
p  can 
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go up and down as K increases; (ii) The mean waiting times are all decreasing (which is 

intuitive); and (iii) The mean total queue length can increase when K increases, which is 

due to more customers in service. 

We also plot the density function of the waiting time of served customers for K = 25, 

50, 100, 120 in Figure 9. It is interesting to see how the waiting time distribution shifts as K 

changes. One thing particularly interesting is the impact of the abandonment epochs on the 

waiting time distribution, which becomes less significant as K increases. Intuitively, it 

happens because fewer customers are forced to abandon as the number of servers increases. 

 

Figure 9. The stationary density functions of SW for =25,50,100,120K for Example 6.2.  

Example 6.3. In this example, we consider a queueing system with a bursty arrival process 

and service times with a big variation. We assume =5,N  1
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=1,l  3
=3,l  4

=5,l  

5 = ,l ∞  = (0,0.2,0.3,0.4,0.1),ηηηη   

0 1

17 0 0 12
17 17 0 0= 4, =(0.1,0.1,0.7,0.1), = .
0 0.4 0.8 0.4

0.1 0 0.1 1

15 0 2 2 5 5 1 0
20 45 2 2 10 5 1 5=4, = , = ;
1 2 25 5 1 6 5 5
1 0 2 15 5 1 1 5

s

a

m T

m D D

   
   
   
      
   

 
 
 
 
 

−
−

−
−

−
−

−
−

ββββ

 (6.39) 

This example is special since the arrival process is bursty and the service times have a 

special distribution as shown in Figure 10, although Table 5 seems to indicate a less variable 

queue than that in Examples 6.1 and 6.2. We use this example to demonstrate that (i) 

Algorithm II can be used for analyzing queueing systems with matrix-dimensions greater 

than two; and (ii) The algorithm faces the matrix-dimensionality challenge, but it is 

applicable to models with specially featured arrival and service processes. 
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(a) Sample Path of Bursty Arrival Process. (b) Density of Service Times. 

Figure 10. Burstiness of the arrival process and density function of the service times  

for Example 6.3. 

    Table 5. Basic Quantities of the Input Parameters for Example 6.3. 

 MAP PH-Dist. | <τ τ ∞  

Rate λ = 13.0132 µ =0.4848 
1

= 0.2903
[ | < ]τ τ ∞E  

Mean 0.0801 2.0627 3.4444 

SCV 1.0194 0.8171 0.2081 

We vary K from 3 to 18. We compute queueing quantities for Example 6.3. Results 

related to customer abandonment, waiting times and queue lengths are plotted in Figure 11. 

As expected, the queue length seems big, the waiting time seems long, and abandonment of 

customers seems significant, even when K = 18.  

 (a) Abandonment Probabilities  (b) Mean Waiting Times  (c) Mean Queue Length 

Figure 11. Summary of queueing quantities for Example 6.3. 

One issue related to the analysis of complicated stochastic systems is state space 

explosion. Specifically, for our MAP/PH/K+GI queue, the number of states in ( )KΩ can be 
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very big. For Examples 6.1 and 6.3, the number of states for each layer is given by 

1
1

s
a

s

K mm
m

 
 
 

+ −
− . We present the number of states as a function of K in Table 6.   

Table 6. Number of states in ( ) ( )n nS S+ −∪ for Examples 6.2 and 6.3. 

K  1 5  8 10  12  14  15  18  50  100  

Example 6.2 4 12 18 22 26 30 32 38 102 202  

= 4am , = 3sm  12  84 180 264 364 480 544 760 5304 20604  

Example 6.3 16  224 660 1144 1820 2720 3264 5320 93704 707404 

It is shown that, if am and sm are small, Algorithm II can be applied for computing 

queueing quantities for K up to 50 or even over 100. Since one can generate all kinds of 

arrival processes and service times even for small am and sm (e.g., Examples 6.1 and cases 

with = 3sm ), the method developed in this paper can be useful for researchers and 

practitioners. 

Next, we use our algorithm to address the performance insensitivity to abandonment 

time distributions, an issue examined in Dai and He [24]. 

Example 6.4. We use the example in Section 6 in Dai and He [24]. We consider an 

/ /100M M GI+ queue with Poisson arrival process 0 1
{ = 105, =105}D D− and exponential 

service time { =1, = 1}.T −ββββ  The distribution of the abandonment time τ can be (i) an 

exponential distribution with parameter ,α  denoted as exp , (ii) a uniform distribution on 

[0,1/ ],α  denoted as Unif , or (iii) a phase-type distribution with { = (0.7,0.3)τββββ  and 

0.3 0= }
0 79 /30

Tτ
α

α
 
 
 
−

− , denoted as 2
,H  which is the well-known Hyperexponential 

distribution, where α is a positive constant. 

To use Algorithm II, we discretize the above three abandonment distributions with 

=1000,N which gives satisfactory approximation results to the continuous case (as 

compared to results in Dai and He [24]. Specifically, for abandonment time τ with an 

exponential or 2H distribution, the interval [0,3 [ ]]τE is divided into 1N − identical 

intervals of length =3 [ ]/ ( 1).Nδ τ −E  Then we define 1
=0,η  = {( 1) < }n P n nη δ τ δ− ≤ , 

for =2,3,..., 1,n N−  and = { }.N P Nη τ δ≥  For τ with an uniform distribution, the 

interval [0,2 [ ]]τE  is divided into 1N − identical intervals of length = 2 [ ]/ ( 1).Nδ τ −E  

Then we define 1
=0,η =1/ ( 1),n Nη −  for =2,3,..., 1,n N−  and =0.Nη  

Dai and He [24] observes that the performance of the queue is insensitive to 

abandonment time distributions. Specifically, through simulation, they have observed that 

the queue with those three abandonment time distributions perform similarly, even though, 

for given α , the three abandonment times have different means and variances. Results 

presented in Table 7 indicates that queueing performance, with respect to more queueing 

quantities than those in Dai and He [24], is insensitive to abandonment time distributions, 
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which is consistent with the conclusion in Dai and He [24].   

Table 7. Summary of queueing quantities for Example 6.4: Part I. 

[ ( )]a tE  Lp  
,1L

p  ,>1L
p  

α   Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 0.5176 0.5010 0.5562 0.0496 0.0497 0.0493 0.0009 0.0010 0.0009 0.0487 0.0487 0.0484  

0.5 0.1216 0.1154 0.1319 0.0601 0.0605 0.0593 0.0037 0.0040 0.0034 0.0564 0.0565 0.0559  

1 0.0660 0.0614 0.0728 0.0668 0.0674 0.0658 0.0063 0.0069 0.0057 0.0605 0.0605 0.0601  

2 0.0354 0.0319 0.0402 0.0738 0.0747 0.0726 0.0103 0.0116 0.0091 0.0635 0.0631 0.0635  

10 0.0074 0.0056 0.0099 0.0886 0.0901 0.0868 0.0276 0.0340 0.0225 0.0609 0.0561 0.0643  

[ ]
S

WE  ,1[ ]
L

WE  ,>1[ ]
L

WE  [ ]WE  

α   Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 0.5187 0.5021 0.5572 0.5390 0.5306 0.5701 0.3460 0.3414 0.3731 0.5103 0.4943 0.5483  

0.5 0.1232 0.1170 0.1336 0.1566 0.1556 0.1621 0.1113 0.1100 0.1172 0.1227 0.1167 0.1327  

1 0.0673 0.0627 0.0742 0.0995 0.0994 0.1019 0.0720 0.0710 0.0752 0.0678 0.0635 0.0744  

2 0.0364 0.0329 0.0413 0.0651 0.0654 0.0659 0.0474 0.0465 0.0492 0.0373 0.0341 0.0420  

10 0.0078 0.0059 0.0104 0.0257 0.0264 0.0255 0.0182 0.0169 0.0192 0.0089 0.0072 0.0113  

,0q
p  [ ]

S
qE  [ ]WqE  [ ]totqE  

α   Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 0.0340 0.0355 0.0287 99.794 99.784 99.826 53.582 51.904 57.57  153.38 151.69 157.39  

0.5 0.2165 0.2238 0.2027 96.686 98.642 98.770 12.880 12.250 13.94  111.57 110.90 112.71  

1 0.3316 0.3425 0.3144 97.988 97.922 98.092 7.122  6.667  7.816  105.11 104.59 105.91  

2 0.4532 0.4684 0.4323 97.250 97.158 97.377 3.921  3.581  4.410  101.17 100.74 101.79  

10 0.7089 0.7356 0.6774 95.699 95.537 95.890 0.936  0.758  1.185  96.63  96.30  97.07  

 

The observation seems to hold for queueing systems with a Poisson arrival process and 

exponential service times. However, it may not hold, even approximately, for queueing 

systems with a non-Poisson arrival process. Now, we change the customer arrival process 

from Poisson to MAP with  

 0 1 .
1 0.2 0.1 0.7= =

1 310 1 308
D D

   
   
   
−

−  (6.40) 

The average arrival rate is 96.4483. The arrival process is bursty since the arrival rates 

in the two states of the underlying Markov chain are drastically different. Quantities in Table 

7 are reproduced and presented in Table 8. Table 8 demonstrates that some quantities can 

be significantly different for the three abandonment times (e.g., ,1L
p and [ ]WqE for 2α ≥ ), 

which indicates that the queueing performance is no longer insensitive to the abandonment 

time distributions.   

To end this section, we analyze the 2 2
/ /100M E E+ queue and compare our results to 

that in Whitt [44]. 
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Example 6.5. We consider the example in Section 2 in Whitt [44]. Instead of limiting the 

waiting spaces to 200 in the original example (i.e., 2 2
/ /100/200M E E+ with 200 extra 

waiting spaces), we assume that the queue has unlimited waiting space (i.e., 

2 2
/ /100M E E+ ). The arrival process and service time follow a Poisson arrival process 

0 1
{ = 102, =102}D D− and Erlang 2 ( 2

E ) service time distribution 2 2{ =[1,0], = }
0 2

T
 
 
 
−

−ββββ  

respectively. The abandonment time τ has a Erlang distribution with phase-type 

representation 2 2{ =[1,0], = }
0 2

Tτ τ
 
 
 
−

−ββββ . Similar to Example 6.4, we discretize the above 

Erlang distribution with =1000.N  

For the queueing model, the customer arrival rate is =102λ and service rate of a server 

is =1.sµ  Then .=1.02ρ  Since Nη is almost zero, Nη ρ is nearly zero and the queueing 

system is stable. Due to customer abandonments, the (waiting) queue length rarely reaches 

200. Thus, the performance of the 2 2
/ /100/200M E E+ queue and the 2 2

/ /100M E E+  

( )discretized queue is very close. Results are presented in Table 9. 

Table 8. Summary of queueing quantities for Example 6.4: Part II. 

 [ ( )]a tE   Lp    ,1L
p    ,>1L

p   

α   Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 1.2385 1.1090 1.4095 0.1470 0.1550 0.1376 0.0007 0.0008 0.0006 0.1463 0.1542 0.1371  

0.5 0.3686 0.2842 0.4968 0.2525 0.2719 0.2302 0.0026 0.0038 0.0018 0.2500 0.2681 0.2284  

1 0.2020 0.1432 0.3027 0.2994 0.3219 0.2715 0.0043 0.0071 0.0028 0.2951 0.3148 0.2687  

2 0.1062 0.0694 0.1783 0.3413 0.3629 0.3105 0.0072 0.0137 0.0042 0.3341 0.3493 0.3063  

10 0.0213 0.0117 0.0449 0.4031 0.4134 0.3821 0.0247 0.0617 0.0111 0.3785 0.3517 0.3710  

 [ ]
S

WE    ,1[ ]
L

WE    ,>1[ ]
L

WE    [ ]WE   

Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 1.5054 1.3608 1.6947 1.8257 1.8502 1.8126 1.3504 1.3316 1.3851 1.4829 1.3567 1.6523 

0.5 0.5113 0.4048 0.6691 0.7401 0.7240 0.7535 0.4933 0.4590 0.5296 0.5074 0.4205 0.6374 

1 0.2990 0.2190 0.4307 0.4842 0.4518 0.5151 0.3015 0.2672 0.3401 0.3005 0.2358 0.4066  

2 0.1671 0.1130 0.2681 0.3077 0.2666 0.3530 0.1763 0.1472 0.2139 0.1712 0.1270 0.2518  

10 0.0370 0.0207 0.0753 0.0893 0.0630 0.1383 0.0427 0.0306 0.0640 0.0404 0.0268 0.0718  

 ,0q
p    [ ]

S
qE    [ ]WqE    [ ]totqE   

Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  Exp  Unif  
2

H  

0.1 0.3182 0.3321 0.3020 82.269 81.498 83.172 143.03 130.85 159.36 225.30 212.35 242.53  

0.5 0.5009 0.5344 0.4622 72.091 70.226 74.247 48.94  40.56  61.47  121.03 110.78 135.72  

1 0.5821 0.6210 0.5337 67.567 65.400 70.266 28.99  22.74  39.22  96.55  88.14  109.48  

2 0.6546 0.6921 0.6013 63.530 61.443 66.501 16.51  12.25  24.29  80.04  73.69  90.79  

10 0.7618 0.7796 0.7254 57.567 56.580 59.597 3.90  2.58  6.93  61.46  59.16  66.52  
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Table 9. Summary of queueing quantities for Example 6.5. 

Performance Measure Simulation (Whitt) Approximation (Whitt) MMFF 

{ =0}P W  0.217 ± 0.0021 0.250 0.2153 

Lp  0.0351 ± 0.00029 0.0381 0.0350 

[ ]WqE  11.52 ± 0.075 11.41 11.620 

[ ]totqE  109.9 ± 0.092 109.5 110.05 

[ ]
S

WE  0.1115 ± 0.00071 0.1102 0.1125 

[ ]LWE  0.1508 ± 0.00042 0.1521 0.1524 

We note that the half width of 95% confidence intervals are shown in the column for 

simulation results. Table 9 shows that our numerical results are fairly close to simulation 

results. Some of our results are not in the 95% intervals of corresponding quantities since 

their model has finite waiting space while our model has infinite waiting space. In addition, 

the following two reasons may contribute to the difference in the numerical results: (i) There 

is always a chance that the actual quantity is outside of the confidence interval; and (ii) The 

abandonment time distributions are different for our and their models. 

7. Conclusions 

In this paper, we reviewed and extended the basic theory on the joint stationary 

distribution for multi-layer MMFF processes. We applied the basic theory to the 

MAP/PH/K+GI queue and developed computational methods for queueing quantities such 

as the customer abandonment probabilities, distributions of waiting times, and the mean 

queue lengths. 

As aforementioned in Section 2, the method developed in this paper can be applied to 

the MAP/PH/K+GI in which the customer arrival process and/or service times depends on 

the age of the customer at the head of the waiting queue. There are also a number of issues 

for future research: (i) Computational details if = 0nµ for some =2,..., 1n N− for multi-

layer MMFF processes; (ii) The queue length distribution for the MAP/PH/K+GI queue; 

(iii) The MAP/PH/K+GI queue in which customers make their abandonment decisions at 

specific waiting time epochs 2 3 1
{ , ,..., };

N
l l l − (iv) The MMAP[L]/PH[L]/K+GI queue, a 

queueing model with multiple-types of customers; and (v) The MMAP[L]/PH[L]/K queue 

with customer priorities. Those issues/models are currently under investigation. 
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